Interactivity in Active Objects Model

Dorian Gorgan, Vasile Sebastian Cornea
Computer Science Department
Technical University of Cluj-Napoca
G. Baritiu st. 28, RO-400027 Cluj-Napoca
Romania
dorian.gorgan@cs.urcluj.ro

Abstract — Interactive application based on adaptive hehavior,
parallelism, cooperation, synchronization and distribution
are extremely difficult te be design, developed and
maintained. The active objects based medeling is one of the
effective solutions. The Active Objects Model (AOM)
introduces and experiments the concept of inferactor. This
paper highlights the interaction techniques supported by the
active objects in complex applications. The research concerns
on the user interaction by mouse and keyboard, the real time
based processing, Lthe operations on local files and directories,
the Internet based operations, and the real process interface.

L INTRODUCTION

The development of computational models has
progressed through phases of procedural model, object
oriented, rule based, logic, and constraint based. The
procedural model achieves specific tasks by algorithms and
data structures. Any procedure has particular inputs and
outputs. Data and procedures are public and no any
protection against unauthorized access. The object oriented
model is based on classes, objects and their relationships.
Data is a set of objects as instance of classes.
Computationally, the object oriented and procedural model
are similar unless the software development performance.

All these models are static and inappropriate for
dynamical simulation, animation, visual programming,
multimedia, concurrency, parallelism, and adaptive
behavior. The active object based model supports dynamic
structure and-behavior that obviously, simulates the reality
better than the static model.

The research work presented by this paper concerns on:

* The interaction techniques supported by the active

objects in the user interface through:

a. Caption and processing of the keyboard and
mouse events

b. Programming and processing of the real time
based events

* The access of the active objects to the computer

resources such as files, directories, audio and video,
and Internet.

* The active objects based control on the real process.

The main concepts and technigues highlighted in the
paper are studied and exemplified through the Active
Objects Model [1], described briefly in the next section.

IT. ACTIVE OBJECTS MODEL

The Active Objects Model (AOM) supports the
development of direct manipulation based techniques [2],
[3]. The model associates a virtual location to any model
entity: active object, static and dynamic variable, behavior,

trajectory, virtual position, action, rule and expression. The
active objects perform their functionality by a set of
associated processors such as behavior, server, presenter,
and interactor. The interactor incapsulates the interaction
between model, user and computer resources.

The developer describes the application either as Active
Objects Modeling Language (AOML) program or as AOM
model in the operative memory. The program describes by
AOML language the specific structures and evolutions and
then is loaded and executed as AOM model (Fig. 1). The
model consists of instances of active objects, behaviors,
trajectories [4], actions, positions, rules, etc. Furthermore,
the executable model can be saved in the AOML form as
well. The AOM platform implements the entity structure
and functionality (i.e. active objects, behaviors, positions,
etc) and mechanisms for message based communication,
synchronization, bounding, etc. [1]

The research on the AOM model focuses toward the
following main goals:

¢ Develop a model that supports the description of
dynamical behavior through the visual programming
techniques [3] ‘ ’

* Experiment and state a consistent set of entities that
supports the description of complex and consistent
programming tasks [2]

* Experiment the AOM platform to support the
interactivity, communication, cooperation, adaptive
evolution, distribution, concurrency, parallelism,
hyperstructures, visualization, hyperspace navigation,
animation, visual programming techniques, and
multimedia presentation (graphics, audio, video)

IJI. INTERACTORS

The interactor is the processor associated to the active
object, which performs the user and object interaction, the

Graphical User Interface

AOM Model

AOM Platform

P X

Computer
Resources

Internet

Fig. 1. AOM functiona! levels

551

real time based control on the object, and the access of the
object to the system files. The interactor gets a location
within the bidimensional screen space and provides to the
associated object the particular interaction ability. The
interactor defines a list of pairs - event and appropriate
sequence of actions. When the event occurs the interactor
performs the particular sequence of actions. There are four
types of events the interactor concerns: mouse, keyboard,
timer and stream:

Interactor Il{
position (175,230);
mouse_event M1 [...},M2{...};
keyb_event K1{...};
timer T1 {...}:
stream S1 {...};

bi

A. Mouse Events

In the AOM model a mouse event means the user
executes a gesture by mouse device within a specific area
declared as active zone. All mouse based gestures are
related to the active zone (e.g. LEFTBDOWN) excepting
the MOUSEMOVE gesture. When a user gesture occurs
inside the active zone the associated active objects
performs a sequence of rules described for an Explicit
Trajectory Position (ETP). Any active object can
interrogate the interactor about the mouse event through
the boolean attributes: isover, isleftbdown, ismidlbdown,
isleftbdow. Moreover, the caller can get the x and y
coordinates of the mouse cursor position.

Let us exemplify the mouse event declaration in the
AOML language:

mouse_event Lbdown({
type LEFTBDOWN;
zone Zonel{
position (32,57);
visibility 1;
graphics G1{
position (10,7);
select brush,brl{
color RGB(0,255,0);
)i
ellipse (0,0,50,50);
bi
}i
do{
type UNCOND;
rule R1(
action Al({
set agent (AS) .interactor (IM) .
mouse_event (Lbup) .
zone (Zonel) .graphics (G1) .
brush (brshl) .color_green, 0;
bi
bi
bi
}i

The Lbdown is looking for a pressing gesture on the
mouse left bution. When the user presses the mouse Ieft

button inside a green circle with radius of 50 screen pixels
the model executes unconditionally the set action of the R1
rule. The action sets on 0 the color_green attribute of the
graphics presentation Gl of the active area Zonel
associated to the mose event Lbup, of the interactor IM and
the active object AS.

B. Keyboard Events

In the model the keyboard event means the pressing or
releasing a particular key. When the user activates the key,
the interactor gets a message that encodes the gesture type
and the key code. If the message matches the expected
event the interactor performs the actions defined for the
associated ETP position.

Example:
keyb_event KI1({
position(i,1);
type KEYDOWN;
key ANY;
do{
type UNCOND;
rule RI1({
position(4,4);
action ActOl{ .
set agent(Ts).presentation(pr).
graphics (Gl) .drawtext,
"Value: " + agent(Ts).
interactor (Il1).
keyb_event (K1) .value;
}i
}i
by
Vi

When the user presses any key on the keyboard device the
aclive object Ts displays the text “Value:” followed by the
text key code. The text is the drawtext attribute of the
graphics presentation G1.

C. Timers

The interactor can be set for real time events within a
programmable time window and rate. The event definition
specifies the start and end of the time window, the event
rate, the cyclic type (e.g. true, false) of the event, and the
timer state (e.g. PLAY, STOP, PAUSE). Through the state
parameter the timer could be started, stopped, suspended
and resumed. By default the state is STOP.

A valid timer event starts the execution of the actions
defined for the ETP position.

Example:
timexr TL1{
pesition(1,5);
start 0.0;
end 2.0;
steps 0.01;
loop TRUE;
do|{
type UNCOND;
rule RI1{

3]

position(4,4);
action Act{
set agent {Clock) .presentation

(Hour) .graphics (Gl) .drawtext,
agent (Clock} .interactor (I1).
timer (T1l) .tmrminute+": "+
agent {Clock) .interactor{I1) .
timer(T1l) .tmrsecond;

The timer T1 has the position (1, 5) relative to the parent
interactor. When the timer gets the state of PLAY it
generates within the time window (0.0, 2.0), between 0
minutes, 0 seconds and 2 minutes, O seconds, at each
second (0 minutes and 01 seconds) a real time event.
Consequently, the interactor Il performs unconditionally
the Act action of the rule R1. The action displays through
the graphics presentation of the active object Clock, the
current real time of the timer T1: <minutes> : <seconds>.
The AOM model can interrogate the timer attributes
through the get action in order to obtain the relative time:
tmrsecond and tmrminute, and the absolute time: year,
month, day, hour, minute, and second.

D. File Based Operations

As well as the user and timer interaction the AOM
model supports the interaction with the computer file
system. The interactor declares the stream events the active
objects can operate on:

stream S1({

position(1l,1);

type TEXT_FILE;

location "C:\autoexec.bat";
b

The active objects can navigate throughout the local
directories and can read and write the text and binary local
files. The model operates on the files and directories
through the get action that returns information about the
operation. For instance:

copyto{<dest_file_name_expression>) - retwns true
whether the AOM model completes successtully the
copy operation, and false otherwise.

deletefile — returns true if the delete operation has been
completed.

readIn — reads a line from the current text file.

writeln(<text_expt>) — returns true if the model has
successfully wrote the text into the file.

Other operations the AOM model performs on the files
are: openread, openwrite, close, iseof, chdir, getfirstfile,
gemextfile, getprevfile, and isdir.

IV. EXPERIMENTS

The next subsections highlight some features of
interactivity in the AOM model,

A. Display the Current Mouse Cursor Location

This AOM model based application exemplifies the
mouse move event, displaying the current location of the
mouse cursor (Fig. 2). The application consists of two
active objects: Afis and Soricel. The first object has a static
location, on a simple trajectory of only one ETP position.
Its graphics presenter just displays the cursor coordinates.
The second object Soricel, includes the MousePad
interactor and the Move mouse event. The object is visible
to enable the interactor, but for simplicity of the
exemplification, does not have any behavior and presenter.

agent Soricel{
position (4,4);
state PLAY;
visibility 1;
interactor MousePad{
position (1,1);
#mouse event entity
mouse_event Move({
type MOUSEMOVE;
do {
type UNCOND;
rule R1(
#action Al and A2 modifies
#the text of the presenter
#by x and y mouse coordinates
action Al{
set agent (Afis).
presentation(pres) .
presentation (MX) .
graphics (GX) .drawtext,
agent (Soricelu) .interactor
(MousePad) .mouse_event (Move) .
positionx;
1, AZ
set agent (Afis).
presentation (pres) .
presentation (MY) .
graphics (GY) .drawtext,
agent (Soricelu) .interactor

Mouse position:
78 84

Fig. 2. AOM based application exemnplifying the mouse move event.

553

(MousePad) .mouse_event (Move) .
positiony;
}i

}i

The Afis active object has a graphics presentation {(pres)
that consists of the graphics (GText) displaying the text
"Mouse Pozition", and two subpresentations MX and MY
that display the graphics GX and respectively GY by two
texts dynamically modified by the Soricel object’s
behavior.

agent Afis{

presentation pres|
graphics GText {
position (26,29);
drawtext ("Mouse Pozition",
0,10,110,60,DT_CENTER);
bi
presentation MX(
graphics GX{
drawtext ("MX",
10,30,40, 90,DT_CENTER) ;
)i
PoMY{
graphics GY{
drawtext ("MY",
45,30,75,90,DT_CENTER) ;
b7
bi
i
Y

B. Digital Clock

The example highlights the access of active objects to
the real time of the sysiem (Fig. 3). The active object
(Ceasul) has defined through its interactor (I1), a timer
event (T1) that modifies the text of the graphics presenter
(Ora) each second. Similarly, it modifies the graphics
presenter (pres) to show the date. The graphics presenter
consists also of three ellipses and three rectangles to draw
the clock body.

For instance, the lime seting is achieved by the code:

interactor Il{

timer T1{
do [

rule R1{

action Al{
set
agent (Ceasul) .presentation(pres) .
presentation(Ora) .graphics(Gl).
drawtext,
agent (Ceasul) .interactor(Il).
timer (T1l) .hour+";"+agent {Ceasul) .
interactor (Il) .timer (T1).

h

Fig. 3. Digital Clock and Chronometer as active objects in the AOM
model.

minute+":"+agent (Ceasul) .
interactor (I1).timer (Tl) .second;
17
bi
bi
bi
Vi

C. Menu in Graphical User Interface

The active object MenuBar has the interactor I1 of three
buttons to support the selection of objects File, Edit and
Help (Fig. 4). The File object’s interactor has three menu
items as buttons, associated as all other buttons in this
example, with the pressing event of the left mouse button.

eri= MeniLagn:

S-a selectat File

Fig. 4. Active cbjects based menu interaction.

The agent Afis displays the text related with the selected
button.

agent MenuBar{
interactor I1(

mouse_event Butonl{...},
Buton2{,..), Buton3{...});
}i
}i
agent File(

interactor TI1{
mouse_event M1 {
type LEFTBDOWN;
zone Z1 |
visibility 1;
graphics GI1{
textout (5,5, "New") ;
}i
bi
do {
type UNCOND;
rule R1{
action Al
set agent {(Afis).presentation
(pres) .graphics (Gl) .drawtext,
"S-a selectat New";
}r» A2{set gent (File).visibility,0;
}, A3{set variable (V1) .value,0;

r

L ¥iewer = Menliagim

B Manitor
O Tastatura

5 2004 cluj napoca ramani.

< Monitor
O Taslatura

Fig. 5. Examples of various interaction techniques of Graphical User
Imerfaces.

¥

ii
bo M2{
definition of the "Open" menu item
b, M3{
definition of the "Save" menu item
bi
1i

e

agent Edit{...};
agent Helpf{...};
agent Afis{...};

D. Interaction Techniques in Graphical User Interfaces

The AOM model has experimented (see Fig. 5) the
various interaction techniques often used in the Graphical
User Interfaces (GUI) such as: push button, edit box, check
box, radio button, text area, menu, etc, The AOM model
provides for the interface objects the adaptive and flexible
structure, appearance and behavior. The model supports
the visual programming based development of GUI.

E. Internet Based Applications

Fig. 6 exemplifies an AOM application by which the
active object called Internet displays through its presenter
four images taken from Internet.

F. Process Interfaces

The experiment concerns on the implementation of
process interfaces through state diagrams (Fig. 7). The
execution of the diagram is achieved by three active
objects W1, W2 and W3. The execution depends onto an
input variable ,,a”, which is 1 (true) if the object W1 has
passed over a particular area and false otherwise. Each
object reports the states and the actions onto a screen
object (Ecran). The diagram execution by the three objects
starts when a mouse click occurs on the ,,Start” state.

Fig. 6. AOM based application displays four images taken from Internet,

T 555

Fig. 7. Active objects support implementation of the process interfaces.

V. CONCLUSIONS

The AOM model provides to the software applications
the active objects based interaction. The interactivity is
supported through a set of interactors that process the user
events carried out by mouse and keyboard, the events
given by the programmable timers, and the file based
events.

The research work concerns on the implementation of
such functionality, the description through the AOML
language, and the experiments that prove the concepts and
techniques. The work presented in the paper focuses on the
concepts and fundamental techniques of interactivity
implemented through active objects, which provide
concurrency, adaptability, communication, dynamic
evolution, viswal presentation, distribution, and visual
programming based development.

The AOM model has been developed, implemented and
experimented in different languages (C, C+4++, Java,
VRML) and software platforms (Windows, Linux and
UNIX). The interactor based version has been
implemented in C++, under Windows operating system.

The practical results have proved the large potential of
active objects model. The functionality, the structure and
the behavior is quite easy to be described in AOML
language and moreover, developed by visual programming
techniques. The development process is rapid and very
flexible. The AOM based applications can be modified and
experimented by really fast approaches.

The future work will be focused on hierarchical
definition of interactors, function specialization, software
platform independence, and experiments on various
domains of applications.

V1. REFERENCES

{11 *Active Object Model” AOM Documentation and
Projects,
http:/fusers.utcluj.ro/~gorgan/res /aom faom.html

[2] D. Gorgan, “Programming Control Structures in
Active Objects Model”, Transactions on Automatic
Control and Computer Science, vol. 49 (63),
“Politechnica” University of Timisoara, 2004.

[3] D. Gorgan, “Visual Programming Techniques”,
Computer Science Education: Challenges for the New
Millenium. Eds. G. van der Veer, I.A. Letia, Ed. Casa
Cartii de Stiinta. pp. 129-142, 1999.
http://users.utcluj.ro /~gorgan/res/webdocs[reposxtory/
papers/ROC-C99P.zip.

[4]1 D. Gorgan, D.A. Duce, “The Notion of Tra]ecrory in .
Graphical User Interfaces”. Design, Specification and -
Verification of Interactive Systems '97, M.D.Harrison,
I.C.Torres (eds.), SpringerWienNewYork (ISBN 3-
211-83055-3), pp.257-272, 1997.
hittp://users.utcluj.ro/~gorgan/res/webdocs/repository/
papers/dsv97.zip

556

