Distributed Active Object Model

Mihaela Ordean
Computer Science Department
Technical University of Cluj-Napoca
Baritiu 26-28 Cluj-Napoca
Romania
Mihaela. Ovdean@es.utcluj.ro

Abstract — This paper proposes and experiments the
communication and synchronization in the distributed Active
Object Model (AOM) as an environment for the
implementation and demonstration of a distributed
communiceation in the description of a graphical scene. AOM
model is composed of many types of collaborative entities. Is
described a graphical scene in AGML language. The article
includes also the AGML extension for distributed computing.

I. INTRODUCTION

The object oriented systems have been developed in °90,
because the growing problems complexity could not be
satisfied anymore by the structured programming
paradigms.

The structure programming is quite inappropriate for
domains like simulation systems, animation, adaptive
systems, visual programming and graphical user interfaces.

The active object based model seems to satisfy better
such requirements. The Active Objects Model AOM model
has been developed as an experimental version at the
University of Cluj-Napoca and at the Rutherford Appleton
Laboratory, UK.

In the domain of graphical animation, simulation, CAD,
virtual reality or multimedia are needed some graphical
dynamic models to reflect as much as possible the object
scenes of the real world, where those objects structure and
behaviour are influenced by any action exccuted on an
object, ;

The AOM model allows the specification of some
dynamic evolutions of constituent entities, each component
having the possibility to interact with each other
component and modifying their structure and/or behaviour.
Here, the behaviour is defined as a relationship between
the object and the model.

This document provides an extension of the AOM in the
space of the distributed systems.

The object model description is realized by the means of
AGML language (AGent Modeling Language) which is a
high level specification of the AOM concepts and assures
the models portability for different system operation
platforms (Windows, Unix, Linux, etc.).

II. FUNDAMENTAL NOTIONS

Active object model is made up both from active and
passive entities [1]. The active entities are represented by
object and variables (fig.1) and the passive entities are
represented by behaviours, trajectories, rules, actions (fig.
2).

The objects are active entities with private behaviour.
The behaviour consists of a set of rules, each rule meaning
a condition and a set of actions [4]. The evolution implies

Dorian Gorgan
Computer Science Department
Technical University of Cluj-Napoca
Baritiu 26-28 Cluj-Napoca
Romania
Dorian. Gorgan@cs.uiclyj.ro

the execution of the associated behaviour on a specific
trajectory.

OBIJECT

state

active object components
behaviour

presentation

PROCESSORS

Behaviour processor
Server processor
Presentation processor
Interactor processor

Fig.1. Object communication model

The behaviour execution of the active objects is
represented by a set of successive actions realized by the
current entity or by the delegated entities. The entity
behaviour is given by the set of associated conditioned
actions. The entities of the model communicate by the
mean of messages. ;

The trajectory is defined by a set of parameters, a sct of
positions and a set of actions which are executed by the
object during its evolution. The trajectory allows the
possibility of direct manipulation of the entities and their
elements. Also, the trajectory is characterized by a
geometric model, direction, quantification (the number of
steps to be passed between two explicit trajectory
positions).

The model is represented by a set of active objects
having an asynchronous behaviour. Application developer
(generally, the user), builds the model using the entity
direct manipulation approach. The developer creates,
deletes and instanciates model entities and defines their
behaviour. During the system runming, the active object
behaviours are executed. Depending on the evaluation
result, the defined actions are executed (there are taken
into consideration: the state of the model, the object
attributes, positions, parameters, so on).

The model state can be changed by the intrinsic
evolution of the model or by external

557

Active object
State
Behaviou® # Behaviour
Presentation
Trajectoryr
ETP List
ETP
Rulel RuleM
Actionl Actionl
ActionN ActionP

Fig.2. AOM Componerts

events. The external events act upon the model by means
of interface between the user and the model.

Interface events are managed by interactors, a special
type of active objects, which check the signals from/to
external modules and send/receive messages to/from the
model. The interactors transform the synchronous
communication between the model and external modules,
into a communication based on messages in the model.

The behaviour of an object is a sequence of actions
executed by the object or by delegated objects. The actions
operate upon the imput elements and gemerate output
elements. The processed elements can be object attributes,
object behaviours, variable values, trajectory positions,
position associated actions, so on. The access to the
elements upon which an operation is executed is
authorized only by means of the processor associated to the
accessed entity. This restriction is imposed by the
synchronization between the object behaviours, common
resources multiple access, and the flexibility of an
implementation and distributed execution of the model.
The delegation principle of the server processor is above
the object encapsulation principle, used in object oriented
programming paradigm.

1I. COMMUNICATION SOLUTION

At execution, the behaviour is implemented by a
processor which manages the accesses to all Jlocal
resources of the associated object, generates the
intermediate positions between two consecutive ETPs
(Explicit Trajectory Position) and responds the requests
coming from other behaviour processors.

Distributed execution assumes that the agents which are
running on different machines can be visualized on one
computer.

The distributed contrcl might be achieved in many

ways:

1. Centralized: there is one application managing the
running agents, application standing on one
machine allowing the communication between the
agents. The application maintains a table with all
running agents. This table may be updated by
adding new running agents at the moment of their
start, by deleting the agents from the list at the
moment of their stop.

Advantage: easy agent management.

Disadvantage: the centralized application has to
know the types of all entities exchanged between
the agents.

2. Distributed: on each machine storing an agent is
running an application, a process which realizes
the communication between the agents. The agents
table has to be kept on each machine.

Advantage: the communication between the agents
is a direct one, without a centralized application.
Disadvantage: the agents’ evidence is bhardly
realized.

3. Combined (a combination of centralized and
distributed). There is a centralized application
maintaining the agents’ evidence but the
communication between the agents is not by the
mean of this application but directly.

The third variant was chosen for implementation

because it eliminates the disadvantages of the first two
solutions.

NI IMPLEMENTATION SOLUTION

Windows was used as the operating system. This OS
includes many mechanisms to support distributed
computing. <

Typically, distributed computed means a task split into
two or more components. The firs component runs on a
client machine and needs minimal resources and the other
component runs on the server and uses high resource
capacity for data processing and a specialized hardware.

Another type of distributed computing splits the work
between many computers, In both cases a computer
connection at the process level allows data exchange
bidirectionally.

Windows includes the following inter-process
communication mechanisms: Windows Sockets, Remote
Procedure Call (RPC), NetBios, named pipe files and
Distributed Component Object Model (DCOM). From
these solutions we chose the socket communication model
and as the implementation language Visual C++ (after
some attempts in some other solutions it was proven that
this one fits better the requirements). The used class
hierarchies are those illustrated in fig.3.

Fi g.3. Socket used class hierarchy

558

Server Client
Socket() Socket()
Bind() / Connect()
Listen()

Connectfon
establighment / Write()
Accept()

Locked until
connection
establishing

Read()]’/

Request
computing

[
Write()

Datyrequest

Daix se

™ Read()

Fig.4. Connection oriented protocol phases

The application uses the connection oriented protocol
(fig.4).

The messages cxchanged between agents and server can
be in of following types:

- REGISTER - client registration

- UNREGISTER - deleting an agent

- BROWSE_SERVER - listing running agents

- MSG_OK - server response for communication
success

- MSG_FAIL - server error response

Register, Unragister,
Browss_Server | Client |

AGMSenvar Agentt

MSG_OK sau M3G_FAIL | Agent2,

Agentn K
O CLOSE_CLIENT

Fig.5. Communication diagram

CLOSE_SERVER

The AOM model is described in AGML language which
was cxtended in order to support distributed execution
facilities. In this sense were introduced some keywords
like:

- ‘register”. declares the server machine

(AGMServer application).

Syntax:
register <machine_name or address>

Action mode: when an AGML file is read, the
machine name or address is stored in a memory
location. This location will be accessed each time an
agent is registered with the given server, an agent is
discharged or when is needed the machine address in
the moment of communication with a running agent.

“extern™: declares the name of the agents located
on different machines and referred in AGML code.
Syntax:

extern <agent name >

Using this keyword has pros and cons.

Pros: In the absence of this keyword the agents
are treated without considering if they are local or
on different machines. In this case the agents must
have unique names in AGML models. Also, each
agent should register with a server generating
network loading. If it is considered that the local
agents are more then distributed agents, the network
traffic becomes really high. Another cause of the
network traffic is the name server accessing for
local agents, because an application would have no
idea if an agent is a local one or a remote one.
Contrary, when the “extern” keyword is present, the
network traffic becomes lower. By default it is
considered that the agents are locals, the distributed
agents being registered with “extern”.

Cons: On each machine using external agents
must keep a list with these agents.

Action mode: The reading of the extern agents list
is realized by interpreting AGML code. The server
is accessed only when a distributed agent is
registered or when a communication between two
distributed agents took place.

The AOM distributed architecture is shown in the fig.6.

AGM
Executor
AGM
Executor Text files

*ag

AGM > AGM
| Client | server
Brows

Fig.6 Distributed AOM architecture

The AGMServer application realizes the agents’
management in a distributed environment and
intermediates the exchanged messages between them. In
this context were developed the following application
modules:

- AGMServer
— name server for running agents;
— intermediates the communication
between agents
- AGMPlayer

Netscape Navigator plug-in

executes distributed AOM in a Web
page

AGMClient

responds to the distributed or local
agents

AGMOcx
— ActiveX control used as a demo to
prove the AGMServer application

functionality

IV. EXPERIMENTAL TESTS AND RESULTS

The application was lecally (server and client on the
same machine) and distributed (in a network) tested. For
the tests I used an AGML editor with the following
distributed facilities implemented:
register / delete an agent to / from the server
send / receive messages of type GET, SET,
CREATE, JMP, CALL, INSTANCIATE,
DELETE.

In order to deal with the errors, the server keeps a
history of the agents’ requests and of their answers. This
report is saved on disk and, when an error appears, might
be detected the conditions of this error.

IV. CONCLUSIONS AND FURTHER WORK

The application might be implemented in the future by
using DCOM technology. It can be extended to allow
many servers communication between themselves in order
to maintain updated the list of active agents. This way will
increase fiability, the response to errors of the distributed
model.

The application might also implement in the future more
collaborative servers to deal with the agents. This can
bring an increased fiability and better error response.

V. REFERENCES

[1} Gorgan, D.: "Fuzzy Learning and Behaviour in Multi-
Agents Based Interactive Systems". LDALS Workshop
at ECAI96 Conference, 12-16 August 1996, Budapest.

[2] D. Gorgan: Multiagents Based Modelling in Graphical
User Interfaces. In the Development Consortium of
the CHI97 Conference. Atlanta, USA, 22-28 March,
1997.

[3]http://users.uteluj.ro/~gorgan/res/webdocs/repository/pa

radigms/Index.htm

560

[4] D. Gorgan, D.A. Duce: Fuzzy Learning in Multi-
Agents Based Interactive Systems. Rutherford
Appleton Laboratory, Research Report, January,
1997, pp.1-43.

[5] Matei Mihai, Mobile agents distributed execution,
Licence Thesis

