Safe Ways in Models for Safety Critical Systems
2004 IEEE International Conference on Intelligent Engineering Systems

Miklés Szijarto
Department of Computer Science
Széchenyi [stvan University
Egyctem tér 1, H-9026 Gyér
Hungary
szifarto@sze. hu

Abstract — In this paper, after summarizing our former results
"we introduce a theoretical model for safety-critical systems, in
which the danger-degree of the points can be measured. We
present an algorithm to determine the safest way between two
given points in polynomial time. We illustrate the theoretical
discussion with some examples and applications.

I. INTRODUCTION
A. Safety-Critical Systems

The engineering systems can be classified in three main
categories:

1) ordinary: No special requirements.

2) reliable: Enhanced reliability in system’s services and
operation.

3) safety-critical: The abnormal operation might
endanger human lives and cause significant material
damage.

The development of safety-critical systems is a complex,
interdisciplinal field, which includes parts of

1) mathematics;

2) software engineering and concurrent programming;

3) mechanical and electronical engineering.

These fields are applied in different parts of the
development’s lifecycle, which includes — according to the
classical theory — requirement definition and analysis,
specification, design, construction, verification and
validation, maintance.

I) We can determine the safety of the system from
mathematical point-of-view, using theoretical models; or
apply mathematically based techniques (e.g. formal
methods) for system specification and development [4]. A
general problem with these results is that they are mostly
academic. Applications are known only in specialized
development centers. Some problems, which these
methods have to overcome: real-life systems are too large,
handling and modeling thém is very complicated, they
often have non-deterministic character.

2) The system usually has sofiware parts, so applying
methods of software engineering are unavoidable.
Handling of safety-critical systems needs special
approaches; we have to guarantee reliability, safety and
some self-protection. During the lifecycle ~ compared with
other systems — there are some stressed fields, as risk-
management in specification, fail-safety, -tolerance and -
avoidance in design, moreover verification and validation
is more specific [5]. Usually, in design and construction,
we have to apply methods of concurrent programming,
details and some general problems can be found e.g. in [2].

Gabor Kallos
Department of Computer Science
Széchenyi Istvan University
Egyetem tér 1, H-9026 Gyér
Hungary
kallos@sze. hu

Tamas Hajba
Department of Mathematics
Széchenyi Istvan University
Egyetem tér 1, H-9026 Gyor

Hungary
hajbat@sze. hu

3) From an engineer’s point-of-view, safety is a
technical and managerial issue. A general principle is, that
we cannot ensurc safety and quality after the construction
(e.g. with tests), it must be built in. So, the whole lifecycle
must be carefully controlled [4]. In software engineering,
there is an American standard to measure the built in
quality, the so-called CMM model [3].

Especially in railway traffic, many subsystems are
safety-critical. A general investigation about this topic with
theoretical and practical questions can be found in [1].

B. Mathematical models

Of course, even with the best planning and production
methods, absolute safety is an unobtainable goal, at least
for a wide range of systems, if not for all. Besides the
hidden failures, we have to consider e.g. human errors and
environment changes.

A possible way of handling this situation is to “predict”
the closeness of dangerous system states, and avoid them,
if possible. There are several references in this topic but
generally well applicable results are yet unknown [4].

II. FORMER RESULTS

In our former papers [6] and [7] we presented a
mathematical model to compute the “closeness™ of critical
(dangerous) conditions in safety-critical systems, using
graphs and Petri nets. The theory of the distance and
probability model is a hopeful result, although we have
examined the possibility of their practical applications only
in some simple cases.

Let us introduce a graph in the following manner, We
denote the status (or condition) of the system in a given
moment with a node. Changes are represented by directed
edges (transitions) to other nodes. Cycles are allowed, too.

A. Distance model

In this model we initiated distances for

edges: the distances are non-negative numbers;

ways: going on consecutive edges the distances are
summarized.

Between two nodes, we have to consider all ways
connecting these two nodes. The resultant distance must be
(following real life considerations) less than or equal to the
minimum of the distances. Possible choices are simply the
minimum or the harmonic average.

Example: Let us consider a simple system, where from
condition ¢ we can reach condition a in two ways, having

575

distances d; and d-, respectively. Thus, the resultant

distance can be

d = min(d,,d,), or (1)
1 d,-d
d= e o B8
i+L dl+d2
4 4 @

B. Probability model

In this model, we label the edges of the graph with
probabilities. The probability for an edge from node i to /
is simply the probability p of the transition from i to j with
0 < p < 1. For ways, going on consecutive edges the
probabilities are multiplied.

Between two nodes, the resultant probability is the sum
of the probabilities of all ways connecting these two nodes,
with the criterion that it must be less than or equal to one.

Example: In the simple system investigated above, the
resultant probability p from ¢ to a is

p=[1r.+I1>, ©)

where the products are calculated for the first and the
second way with indices i and j, respectively.

C. Additional results

Sometimes the distances, in other cases the probabilities
are given, that is why we attempted to connect the two
models. We can change from probability to distance model
with some kind of logarithmic function, while the reverse
direction with some kind of exponential function, but
several problems are yet unsolved.

Finally, we mentioned that an algorithm can be applied
in our models to determine the distances correctly.

IIT. GOALS AND PRELIMINARIES

Our goal in this paper is to present a method — in a
slightly modified model — to determine the “safest” way
between two nodes (this way is not necessarily unique).
After it, some investigations will be made to analyze the
results.

Let G = (V, E) be a directed graph (which is considered
to model a safety-critical system), where ¥ is the set of
nodes, F is the set of edges (transitions). Let D be the set of
death-points, i.e. the points, which we want to avoid to
guarantec safe operation. Let us give two points #; and #;,
between which we are interested in the safest way.

The safest way for us is a way, which is the farthermost
from any of the death-points (see the definition below).

IV. THE ALGORITHM

Our algorithm determines the desired way in the
following steps:

1) We specify to every point v a number dang(v), which
measures its danger-degree.

2) We define the danger-degree of a way by
summarizing the nodes” danger-degree.

© @\g/@ @\93/o/©

Fig. 1. Examples to illustrate the introduction of danger-degree

B

3} We determine the right way by using Dijsktra’s
method.

Let us denote the length of the minimum-length way
from node v to wby (v, w).

Definition:

Let D= (d;, ds, ..., d,) be the set of death-points. Let the
danger-degree of the death-points be infinite. For an
arbitrary point ve ' — D let

1
dang(v) = @
e S

The motivation behind this definition is as follows.

If a point has only one neighbor, which is a death-point,
then its danger-degree is 1 (unit) (“Fig. 17, first example).

Following real life considerations, we have to ensure
that if there are several death-point-neighbors, then the
danger-degree is larger. E.g. for the sccond example in
“Fig. 17, the danger-degree is 2. If the death-point is far
away, the danger-degree is smaller. Applying the definition
for the third example in “Fig. 17, we can see that

dang(p;) = 1.5.

Stepl (general determination of the danger-degree)

Let us reverse the edges of the graph. From death-points
dy, ds, ..., d, let us apply Dijkstra’s algorithm (finding the
minimal way, see e.g. in [3]) for every d;, to determine
values &(d,,v), for every ve V' -D.

Remarks

a) Since the algorithm works for graphs having edge-
weights, before the procedure we label the edges with
weights 1.

b) In the graphs — for correct execution of the algorithm
— cycles are allowed, but negative weights are not, our
graphs are clearly such types.

¢) We could work in stepl in “normal” (not reverse)
manner, too; namely we could start the algorithm from
every non-death-point. However, with this choice finally
we would get the distances between all of the pairs of
points, which are clearly not necessary.

d) Its worthwhile considering the efficiency of stepl.
Taking into account the considerations given in [3], the
execution needs at most cnE steps, where n is the number
of death-points, E is the number of edges and ¢ is a
constant.

Step2)
Definition:
Foraway P=(v;, v, ..., v) let
k
dang(P) = z dang(v;) (5)

i=1

576

puq"-.% \ i

=)
d; dy

Fig. 2. Sample system for the presentation of the algorithm

From the definition, the smaller the sum dang(P) is, the
“better” the way is.

Step3)

To determine the safest way, we will apply Dijkstra’s
algorithm. To achieve this, from the original graph we
build a new one (which is essentially equivalent), which
has cdge-weights.

Let us make a directed graph G, = (V3, E,), for which
initially ¥, = V, E; = E. Let us moreover label the edges
e=(u, v) of G; by c(e) = dang(v). For a way P let us
introduce c(P) by simply summarizing the c(e)-s of the
consecutive edges. Now for a way P = (v, vy, ..., v;) we
have c(P) = dang(P) - dang(v,).

This means that if for a way P from node ¢, to > in the
original graph G the quantity dang(p) is minimal, then this
is a minimum-length way in G,, regarding the weight-
function ¢, and the reverse direction holds, too.

Thus, if we apply Dijkstra’s algorithm in G, to
determine the minimum-length way from node ¢, to £, this
will be a way having minimal danger-degree in G.

Remark)

Considering the efficiency of step3, we deduce that now
the execution needs at most cE, steps, where E, is the
number of edges in G; (the same as E) and ¢ is a constant.
Taking into account the former result for stepl, we can
conclude that our method is polynomial.

V. AN EXAMPLE

To demonstrate the execution of the algorithm, let us
choose a system, which can be modeled by the directed
graph presented in “Fig. 2”.

We are interested in the safest way from p; to p,.
Applying the first step of the algorithm, using (4) we got
the danger-degree of all of the points. For py, we have

I 1r 1 1 7 6
dang(p,) Tt3tytasg L6 (6)
where the values in the expression are given for death-
points d;, dy, d; and dj, respectively. E.g. for point d,, the
minimum-length way is P = (py, py, ps. dj), so its length is
3. Similarly, for the other death-points, the lengths are 3, 4
and 4.

For some other points — similarly as in (6) — we have
dang(p;) = 5/3, dang(p;) = 5/3, dang(p;) = 61/84, dang(p,)
=4/3 and dang(p,) = 61/84.

The result for dang(p;) comes from

1 1 1 1
S AL 7
dang(p,) 3+8+8+7 (7

For other points, the values are omitted.

Thus, applying the third step of the algorithm, we will
get the safest way as P, = (pg, p1, p2, ps, py). lustrating one
sub step let us show why point p; was chosen after p,, why
not ps. We know that dang(p;) is less than dang(p,) and
from ps to reach p, at least two more nodes are needed with
some positive danger-degrees,

The way’s danger-degree is

7 5 5 61 61 125

dang(P)=—+=+>4+—3—="2" »5052. (8)
6 3 3 84 84 21

VL REAL-LIFE APPLICATIONS

Considering the real-life situation, sometimes we face a
problem, that only a set of the possible starting or terminal
points are given. In this casc, we have to determine the
endpoints. We present a possible method based on our
algorithm.

Let us denote the set of the possible starting points and
the set of the possible terminal points with S = (57,82 ...,
syp) and T'=(t;, 1o, ..., t,), respectively. For every pair (s, f)
we determine the way from s; to # with minimal danger-
degree, denoting its value by dang(i, /). Finally, we choose
our endpoints s; and #, for which dang(i, /) is minimal.

A worse situation is, when only a set of the starting
points is given, and we cannot predict exactly which
endpoint we should arrive later (i.e. we have no possibility
of choosing among the terminal points).

Using the “pessimistic” approach, for safety we would
like to minimize the danger-degree even in the worst case.
To do this, for every pair (s;, ;) we determine the way from
5; to #; with minimal danger-degree, denoting its value by
dang(/, /). Finally, we choose our endpoints s and #, so that

min max dang(i, j) = dang(s, 1) -)
i

If we have more information about the endpoints, e.g.
the probability of their choice is given (in the simplest case
all of them are equal), then for every starting point we are
able to determine the expected value of the danger-degree
of the way to the terminal points. We choose the starting
point for which this expected value is minimal.

VII. EVALUATION

It can be seen that even in our small example the
comparison of the “goodness” of two different ways is not
an easy task to do. In real-life applications mentioned
above the situation is much more complicated. However,
the use of the danger-degree gives an exact method in
simple and complicated cases, and sometimes it helps us to
find elegant solutions.

VIII. REFERENCES

[11 Benyd B., Héray T., Kallos G., Keresztes P., Pataricza
A., Rézsa G., Szijarté M., Sziray J., "Vasii

577

(7]

Biztonsag-Kritikus Rendszerek Verifikdcidja és
Validéciéja," Vezetékek Vilaga, 2000/3, pp. 15-19.

A. Burns and G. Davies, Concurrent Programming,
Addison Wesley Publishers Limited, 1993.

T. Cormen, C. Leierson, R. Rivest, Introduction to
Algorithms, The Massachusetts Institute of
Technology, 1990.

F. Redmill and T. Anderson (Eds.), Safety-Critical
Systems: current issues, fechniques and standards,
Chapman & Hall, 1993.

I. Sommerville, Software Engineering (sixth edition),
Pearson Education Limited, 2002.

M. Szijarto, D. Gréger and G. Kallos, “A Qualitative
Model for Conditions in Safety-Critical Systems”,
Hungarian Electronic Journal of Sciences, 1999,
(http://heja.szif hu/ANM/).

M. Szijartd, D. Groger and G. Kallds, “A Distance
Model for Safety-Critical Systems”, Periodica
Polytechnica Electrical Engineering, vol, 45, no. 2,
2001, pp. 109-118.

