A Temporal Extension of a Spatial Relational Model

Agnes B. Novik Zoltan Ludényi
Institute of Mathematics and Computational Sciences Faculty of Electrical Engineering and Informatics
Budapest Polytechnic Budapest University of Technology and Economics
Népszinhaz u. 8, I1-1081 Budapest Miegyetem rkp. 3-9. H-1111 Budapest
Hungary Hungary
b_novak@zeus.banki. hu quad@dpg.hu
Marton Bérces Zsolt Tuza
Faculty of Electrical Engineering and Informatics Hungarian Academy of Sciences and University of
Budapest University of Technology and Economics Veszprém
Milegyetem rkp. 3-9. H-1111 Budapest Kende u. 13-17, Budapest / Egyetem u. 10, Veszprém
Hungary Hungary
bml@yreemail hu tuza@sztaki hu
Abstract — In this paper a spatiotemporal relational B. Notation
model is given. This model is based on the PLA spatial
relational model introduced by the US Bureau of the Throughout the paper we apply the simplest
Cens“s:r;ﬂ":ﬁa“»" t"] r "F;res?“t toil?‘::]‘fgical g";’?e"ﬁes of standard notation. A relational schema is denoted
maps. € temporal extension o 1S model Improves : - -
theporiginal mml;el to reflect the changes of Spaﬁf?l data by Name_of relation(Atribute_I, Attribute 2, ..,

Attribute_n).

If the relation schema is given as R(A,, A,, ...
I. INTRODUCTION Ay), then a corresponding relation instanf:e is
denoted by r. An attribute can be referred to simply
by its name, like A, , or, if necessary, R.A, .

Due to space limitation, algorithms are described
as short as possible. For that purpose, in the
pseudocodes of the algorithms we use relational
algebra, which provides a widely known, brief and
implementation-independent tool. In this way, the
symbols [, o, and [>< stand for the relational
algebraic projection, selection, and natural join,
respectively.

Since a relation instance is an unordered set of
tuples, it causes the problem that it is difficult to
describe loops of an algorithm. However, in each
real system there are tools through which we can
fetch rows one after the other, also getting the
possibility to arrange these tuples in an array, if it is
needed. We enter into neither these nor other
technical details, but give an informal (and still
correct) description of the methods. For that
purpose, we use some simple functions and
procedures; their brief descriptions are given below.

in time.

We first describe the background of problems and
results presented here, and then introduce the notation
used in the paper.

A. Motivation

The study of spatiotemporal data, their
representation and manipulation is one of the major
issues in database theory and practice. An important
task in this area is the modification of the already
existing spatial models in order to make them able to
represent objects changing in time.

The importance of these types of extension lies in
the fact that usually there are already well-elaborated
algorithms for the original models, and therefore
there is a hope that these algorithms or their slightly
modified wversions can be used also for the
corresponding extended spatiotemporal model. In this
paper we extend a relational spatial model into a

spatiotemporal model.

The rest of the paper is m:ganized as follows. T.he Max(r, A): this function gives the maximum
next subsection, Notation is followed by a brief value of attribute A in the relation instance r.
review of the PLA-Model and the description of the
base of its temporal extension, in Section II. Since the Number_of rows(r): this function gives the
original model has four relations, in Section III we number of rows in a given relation instance r.

give algorithms to derive the analogous temporal
relations. The resulting four spatiotemporal relations
form the complete model, that we call PLAT. Finaily,
in Section IV we conclude with a discussion on
further applications of the present model and some
related questions for future research.

Insert_row{(<ay,as,.., a,>, 1): this procedure inserts
the row given in the first argument into the relation
instance r. Of course, n must be equal to the arity of
R. In the loops of the algorithms, some variables
will be specified in a way that is informal but still
sufficiently precise for technical realization.

585



ILDATA MODELS

In this section we first describe the original PLA-
Model (Section 4), and then the base of its extension,
PLAT (Section B) at the logical level of data
abstraction. Because of space limitation, we restrict
ourselves only to the very necessary informal
introduction. For the interested reader we give
references to some of the most important works in
connection with these models.

A. The PLA-Model

Under the word “spatial” we usually mean that the
stored object has some well-defined geometrical
extent, represented in the model in some way. It is not
completely true for the PLA-Model, however, as it
belongs to the spatial models in a generalized sense.
The aim of PLA is the representation of the topology
of a “typical” map — or, equivalently, a planar graph
together with its regions (areas) —~ in terms of
relational databases. So, the geometrical realization of
the graph is not stored explicitly, and is not at all
unique either.

The PLA-Model was introduced by the US Bureau
of the Census [1]. A more detailed explanation and
also other spatial models can be found in [2]. Here we
recall some parts of a review of the PLA-Model in
[3]. We omit the set of conditions, which restricts the
type of representable graphs to the 2-connected planar
graphs. Detailed discussions of the PLA-Model can
be found in [1-3].

The PLA database consists of four relations, R1,
R2, R3, R4, whose schemas are as follows.

In R1, the edges of a graph are stored, with respect
to the schema R1(LINE, FROM, TO). Atiribute LINE
is the identifier of the edge, FROM stands for the
“starting” point, and TO for the “end” point of that
line, respectively. The edges stored in the database
arc undirected, but in order to obtain a unique
representation of the areas (regions) there is a need
for some orientation. In the sequel, to avoid
ambiguity, we suppose that the points are labelled
with natural numbers, and the starting point of each
line is always the vertex labelled with the smaller
number.

In the second relation R2, the relative positions of
an edge and its surrounding areas are given with the
schema R2(LINE, LEFT, RIGHT). The attributes
correspond to the identifier of the line, the name of
the area on the left side and the name of the area on
the right side of that line. The left and right sides are
determined in accordance with the previous relation,
that is, if the line e goes from point i to point j (i.e.,
i<j is assumed) and its bordering areas are x on the
left and y on the right while we are walking along the
edge ¢ from point / to point j, then the corresponding
stored tuple is <e, x, 3>, In the original model these
areas x and y must be distinct, because the stored
graph is required to be 2-comnmected.

586

Relation R3 stores the border of an area (region).
The schema is R3(AREA, POINT, LINE, LABEL).
The first attribute is the name of the area whose
neighbourhood is represented. It is assumed that
every area is surrounded by an alternating cycle of
points and lines. So the second attribute means the
identifier of a point, the third one is the identifier of
a line on the border of that area, and the last
attribute, LABEL is the serial number with respect
to the area named in the first attribute. The labels
are consistent with the orientation; that is, the
enumeration of points and lines in the cycle
corresponds to the clockwise orientation, except for
the infinite area, for which the orientation is
counterclockwise. In each row of the relation, the
point and the line are incident, and the line is the
successor of the point in the corresponding
orientation. Labels ensure the correct enumeration
of edges and points on the border of a given area.

The fourth relation, denoted R4, has a similar
role as R3, but it represents the environment of a
point. Its schema is R4(POINT, LINE, AREA,
LABEL), where POINT means the identifier of the
point whose neighbourhood is stored in the relation,
LINE is the identifier of a line, AREA is the
identifier of an area in the neighbourhood, and
LABEL is a serial number. Similarly to the
previous paragraph, the orientation is clockwise
{(but now for all points, without any exception), and
of course the line is on the boundary of the area.

It is proved in [3] that the PLA-Model is
redundant from the point of view that R3 alone is
equivalent to the whole database; that is, from R3
one can completely generate R1, R2 and R4
without loss of information. Based on a different
approach, a closely related result was given in [4].

B. The base of temporal extension: R3(1)

As we have already mentioned, the PLA-Model
can be reconstructed from R3 alone, so it seems to
be a good choice to supply R3 with temporal extent.
R3 stores the border of each area, that is, an
alternate sequence of points and lines surrounding
that area. Consequently, the time interval for the
lines and points will be derived from the temporal
extension of R3.

First we explain the temporal extension of R3,
and afterwards in Section III we deal with the
extension of the other three relations of the PLA-
Model.

One possible way to store the temporal extent
would be to complete R3 with two further
attributes, BEGIN and END, referring the time
when the area starts and ends to exist, respectively.
Thus, the schema for R3” would be -R3’(AREA,
BEGIN, END, POINT, LINE, LABEL), where
AREA, POINT, LINE, LABEL are interpreted as in
Section 1.4, and BEGIN and END stand for the
starting time and the latest time of the existence of



the stored object. In case we would choose this
relation schema, then in an instance for R3’, in each
row the values for the attributes AREA, BEGIN,
END would be repeated as many times as many lines
it has on its border. In order to eliminate this
redundancy, the following decomposition gives us a
more appropriate relational schema. The spatial
information is stored in R3(AREA, POINT, LINE,
LABEL), as in the original model, while the
comresponding temporal data are given in a new
relation RS, with the schema RS(AREA, BEGIN,
END). Attribute AREA in R3 must be a candidate
key, otherwise the decomposition might be lossy.

I1I. COMPLETE EXTENSION OF THE PLA-
MODEL

In this section we extend the remaining three parts of
the PLA-Model; that is, we derive the temporal
extensions for R1, R2, and R4. Let us recall that in
the original model, the data expressiveness of R3 is
eqvivalent to the whole model, as all of R1, R2, R4
can be derived from R3. This fundamental property of
R3 will be maintained in the temporal version, PLAT,
too.

A.  Constructing R1(1) from R3 and R5

The existence of a line and of a point can be
concluded from the existence of the area containing
that line and point on its border.

There is no practical need to store relation R1°, the
temporal extension of R1 explicitly for each possible
time interval. Indeed, it is better to derive a snapshot
for R1’ only at a given time, t This relation is
denoted by RI(t) with the schema RI(t)(LINE,
FROM, TO, BEGIN, END). All lines are stored in
RI(t), for which the corresponding area, that is, the
area involving the line on its border, exists at that
given time t.

Algorithm 1 below shows the process for getting
instance r1(t), from the instances of R3 and RS.

Algorithm 1: Constructing r1(t)

INPUT t, 13, 15
TEMP:= (Gprcmsyaq<enp) (r3)><(r3)
A= first value found in TEMP.AREA

FOR EACH value in TEMP.AREA
A:=GAREA=A:-(TEMP)
B:=[Ipramoarea-a<(TEMP)
E:=TTexpoarea-a«(TEMP)

/#B  and E are just single values
RI(t).BEGIN and R1(t).END, respectively*/

FOR i=1 TO Max(A, LABEL)

P1:=]] aromer G LaseL-{( TEMP)
/*just one value for one of the endpoints of a
line*/

for

587

L:=TTaLime O Lapr-(TEMP)
/*just a single value for RI{t).LINE #/
1=i+1
IF [1 tABeLG LaBeL- TEMP)> Max(a, LABEL)
THEN j=1
P2:=I1 s poinT © Laer~(TEMP)
IF P1<P2
THEN Insert_row(<L,B,E,P1,P2> rl(t))
/*points are labelled by natural numbers*/
END FOR
A= next value found in TEMP.AREA
END FOR

In Algorithm 1 above, first 3 has to be selected
with respect to BEGIN<t<END. These time
intervals are closed from the left, in order to avoid
the possibility of inconsistency. Let us denote the
resulting relation by SRS. Taking the natural join of
SR5 and 13, we get the rows involving the exsisting
lines at time t. This resulting relation is denoted by
TEMP. The schema for TEMP is as follows:
TEMP(AREA, BEGIN, END, POINT, LINE,
LABEL).

These existing lines have to be put into r1(t). In
R1(t) the lines are represented by their endpoints,
which can be got from the given instance of TEMP.

In the inner loop, each area A* is browsed for the
endpoints of a line L, and the endpoints are inserted
into ri(t). Relation A is a temporary relation for
grouping the data with respect to one area. In the
inner loop, the starting point and the end point of a
line are decided.

B, Constructing R2(t) from R3 and RS

Relation R2 informs us about the neighbour arcas
of a line, having that line in common on their
border, Generally, since some parts of the object
may appear or disappear, the requirement of having
always two different areas on the two sides of a line
can no longer be kept. This would require to drop
the original restrictions on the PLA-Model. Due to
space limitation, these complication (for allowing
also edge insertion/deletion) will be discussed in a
forthcoming paper. Here we assume that only entire
areas are inserted into, or deleted from the database,
implicitly also involving cases where the region is
constructed by an adge having its endpoints already
in the graph. When deleting an area, however, the
graph — originally 2-connected in PLA — could be
split into several planar parts, causing difficulties
especially in the recognition process of the border
of the infinite area. On the other hand, at each time,
area update (insertion/deletion) can be organized in
a way that all those areas are updated whose
bordering line(s) have been affected. Deletion can
be modelled as a simple time update, if we view the
stored object as the union of all its parts that existed
at a time. This requirement can ensure that each line
has two different areas on its sides, at every time,



Similarly to RI(t), we can define R2(t) that stores
the information about the relative position of lines
and areas existing at the same time. The schema for
R2(t) is: R2(t)(LINE, BEGIN, END, LEFT, RIGHT).
This R2(t) can be constructed by Algorithm 2 below,

The first two lines are the same as in Algorithm 1.
In the FOR loop, an identifier for a line can be taken
from R3, and then TEMP is selected with respect to
that line resulting in A. Since each line is on the
border of exactly two areas, we already get the areas,
and only their relative position has to be figured out.
It is based on the facts that the two points must be
distinct for each line, and that the points are labelled
by (natural) numbers.

Algorithm 2: Constructing r2(t)

INPUT t, 13, 15

TEMP:= (o (seamvsonenny(3)) B> < (13)

L:= first line found in TEMP.LINE

FOR each value of TEMP.LINE
A=cwg-L (TEMP)
/*A consists of 2 rows, say x-row and y-row*/
x:= [ Tpomr(A) in x-row
y=[Ipomt(A) in y-row
IF x<y THEN Left:= [1sgga (A) in y-row

Right:= [Tsrea (A) in x-row
ELSE Right:=[Tarea (A) in y-row
Left :=[1agea (A) in x-row

TIME:=]1 BEGIN, END OLmE-L (A)
#TIME consists of 2 rows, say x-row and y-row*/
Tbx:= [Igzzem(A) in x-row
Tby=IIpecn(A) in y-row
IF Tbx<Tby THEN B:=Tbx ELSE B:=Tby
Tex:= [Tpnp (A) in x-row
Tey:= I Tenn(A) in y-row
IF Tex<Tey THEN E:=Tby ELSE E:=Tbx
Insert row(<L, B, E, Left, Right>, 12(t))
L:= next line found in TEMP.LINE

END FOR

In most of the practical cases, if we already have the
relation RI(t), it is not necessary to store again the
time intervals for the lines in R2(t). In this situation
we do not put the attributes BEGIN and END into
relation R2(t), and, accordingly, do not insert the
values B and E into r2(t).

C. Constructing R4(t) from R3 and RS

Recall that R4 stores the environment of a point
with the schema R4(POINT, LINE, AREA, LABEL).
The corresponding r4(t) is interpreted in an analogous
way to rl(t) and r2(t). In order to avoid that a line is
surrounded by the same area on its two sides,
similarly to the previous paragraph, we assume that
only entire areas are allowed for insertion into the
database, and that after each insertion or deletion of
an area, all the affected areas are updated. Moreover,
the stored object is required to be 2-connected at any

588

time.

As proved in [3], r3 determines r4 apart from the
cyclic rotation of labels around each point.
Therefore, the local choice of a starting label is
arbitrary; but after that, each pair of consecutive
lines has to be on the border of the same area, that
can be identified using r3.

Algorithm 3: Constructing R4(t)

INPUT t, 13, 5
TEMP:= (G(BEGINSQA(KEND}IS)) >< (r3)
P*:= first point found in TEMP
FOR each value in TEMP.POINT
ARI =CPOINT=p~ (TEMP)
A= first area found in AR1
FOR i=1 to Number_of rows(AR1)
AR2=0agpa-a- (AR1)
/*just one row: <A*P, L*, j>*/
A*=]]area(AR2)
i ‘-=HP01N7{AR2)
L*=[I me(AR2)
j=TlLape(AR2)
Insert_row(<P, L¥, A¥, i>, rd(t))
AR3=¢c AREA:=A¥ (TEMP)
IF j-1=0 THEN j:= Max (ar3, LABEL)+1
AR4:=c LABEL=j-1 (ARS) i
/*just one row: <A* P’ 1, j-1>%/
L’:= [Tune(AR4)
A*=[[(c Lne-'(AR1))

/#result of selection is just one row:
SARE P Lol kRSN
END FOR
P*:=next point found in TEMP
END FOR

In this algorithm we haven’t inserted the
values of BEGIN and END for representing the
time. The time interval can be inserted for example
before or after the line AR4:= & (apgi~1 (AR3),
marked by // above. This can be done in a similar
manner as it was for r2(t). The existence of the
environment of a point, however, cannot be decided
based on the existence of an area. So there are
several choices for interpreting the time interval for
R4(t). From the point of view that this relation
stands primarily for points, the union of the time
intervals for a given point is probably the most
reasonable solution, but there can be some
applications where the intersection of the time
intervals would fit better to the nature of the
problem.

IV. CONCLUSIONS

In this paper we introduced a new extension of
the PL.A-Model, that also involves time. The new
model, PLAT has been developed on the basis of
only one relation in the original PLA-Model,
namely R3 that stores the boundaries of the areas.



The time extensions of the other three relations are
constructed by Algorithms 1, 2, and 3.

As we have mentioned, the general case is
restricted here to the one in which only entire areas
are inserted or deleted. It would be useful, however,
to answer questions arising when one allows some
further modifications in the PLA or PLAT model;
e.g., what happens if also single lines can be inserted
into the object, as it frequently occurs in real-life
applications.

Also, the following problem would be interesting
to solve: consider a given planar embedding, how can
it be handled if drawing a region inside another
region is allowed; that is, when an “island” is “cut
out” from a region?

Though any expert in the field can easily decide
whether a given model is a spatiotemporal one, a
standardized model for spatiotemporal data is not
available so far. Instead, there are several different
models, some of them are well-fit at a certain type of
problem, while some others are more appropriate for
other types of problems. Then, of course, it can be the
case that there is a need to translate one model into
another, and vice versa.

This need for interoperability between the models
becomes clearer if we think of the many already
written specialized programs, that usually can
manipulate on some predefined type of models only.

Motivated by these problems, we provide some
algorithms transferring PLAT into other spatio-
temporal data models and vice versa, in the forth-
coming paper [7].

589

V. REFERENCES

{11 J. P. Corbett, “Topological Principles in Cartography,
Technical paper 48,” US Bureau of the Census,
Washington DC, 1979.

[2] R. Laurini and D. Thomson, Fundamentals of Spatial
Information Systems, APIC Series Vol. 37, Academic
Press, 1992,

[3] A. B. Novak and Zs. Tuza, “Reconstruction Graphs
and Testing Their Properties in a Relational Spatial
Database,” Computers and Maihematics with
Aplications, vol. 43, no. 10-11, 2002, pp. 1391-1406.

[4] B. Kuijpers, J. Paredaens and J. Van den Bussche,
“Lossless Representation of Topological Spatial
Data,” in Advances in Spatial Databases, 4
International Symposium, Portland, Lecture Notes in
Computer Science Vol. 951, Springer-Verlag, 1995,
pp. 1-13.

[51 P. Revesz, Introduction to Constraint Databases,
Springer-Verlag, New York, 2002.

[6] J. Chomicki and P. Revesz, “Constraint-based
Interoperability of  Spatiolemporal  Dalabases,”
Geoinformatica, vol. 3, no. 3, 1999, pp. 211-243.

[7] A. B. Novék, M. Bérces, Z. Ludényi and Zs. Tuza,
“On the TInteroperability Problems of the Spatio-
temporal Relational Model, PLAT,” submitted.





