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Abstract - A method for the kinematic study of the spatial
mechanisms, based on a matrix formalism, easy to adjust to the
computer’s modeling Is presented in the paper. This method is
part of the authors’ efforts to develop a general algorithm for a
complete study of the mechanisms with deformable links. The
method is applied on the kinematic chain of a hexapodous robot
wheose structure and movement had been inspired from the
study of a hexapodous insect. The theorefic research has been
materialized through an experimental model which complies
Jaithfully with the structure and the movement of the
biomechanism.

I. INTRODUCTION

Some of the most important achievements of the authors
in the field of the dynamic modeling of the spatial
mechanisms, especially applied on the walking robots, are
presented in the papers [1], [2], [3].

These methods have a complex character, based on
mathematical models which allow the full description of
the kinematic elements’ movement, but especially of the
geometry and the kinematic and dynamic behaviour of the
kinematic pairs, in order to obtain an integrated system,
useful in computer aided design, of the plane and spatial
mechanisms. But, unfortunately these methods are
available only for mobile mechanical systems with rigid
elements.

We have in view to conclude a general method for the
kinematic study of the plane and spatial mechanisms, to
allow the subscquent consideration of the elements’
deformability, both for the kinematic and dynamic
problems.

The kinematic elements’ shape is defined by introducing
some simple configurated transfer matrix.

II. THE GENERAL KINEMATIC MODEL

It’s considered a kinematic linkage made by n rigid
solids, connected through n-1 kinematic pairs (fig.1).

Fig. 1. The kinematic linkage
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We make the next notations:
~T,(7.J,.k) - the reference frame attached to the element i,

with unit vectors base I/?,— (lti,}i,ﬁk-f ); i= I,_n .
- I;,[;-,}i, E,-) - the global reference frame with unit vectors
base Wo (;o,}o,zu );

=5
- 8; - the relative translation vector between the elements

i-1 and 1, with respect to existed trihedral, if there is a
prismatic pair between elements i-1 and i; (i =1,n).

- »; - the position vector with respect to the reference
frame T; of O, point, from which begins the relative

translation, (i=1,n);
-8, - the position vector of M i, in proportion toT,,
attached to element i.

A. Positions

The position vector of M, point with respect to the
global reference frame is given by the relationship:
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We introduce the coordinate transformation matrix from a
reference frame to another. The relations (2), (3) and (4)

become:
{I’?i-l }: [Amt-l]{_‘Wa} ®)
n={r} {Fal =Y [4.{7.]  ©
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Introducing the relations (6), (7) and (8) in relation (1) we
obtain:
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B. Velocities

We get the velocities deriving with respect to time the
relationship  (9).  Considering  the  coordinates
transformation matrix is being orthogonal we can write the
relation:

(4, ]4, 1 =[1] (10)

Deriving with respect to time the relation (10) we obtain:
[AG:'IAGI ]T +[Aoi ][Aar]T =0 (1D
g Jal =l da) =-lada Y a2

We observe that the term [“;ioi lAg:J is an anti-symmetrical
matrix:

[2601 ] = [‘&oi IAai ]T (1 3)
;] it’s obtaining:

Multiplying the relation (13) with |4
(@, J4,1= L4, a4

Deriving with respect to time the relation (9) we obtain:
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We have the anti-symmetrical matrix:
| 0 wgp - wgp
@,,]=-2, o @ (17)
@y, @G, 0
where:
B, , =) i + @)+ @k (18)

For every vector 51-, r; and S[ , = I,;) we can attach an

anti-symmetrical matrix, as in the relation (17). The terms
used in the relation (16) can be also written as follows:

Y (8, =10, ) 7] (19)
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o, }= o500 }T

In this case we can write the relation (16) :
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C. Accelerations

Deriving with respect to time the relation (22) we obtain:

o [
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III. THE KINEMATIC MODELING OF A
HEXAPODOUS ROBOT

(23)

The method presented above is illustrated by applying
it on a kinematic chain belonging to the structure of a
hexapodous robot.The inspiration source for the kinematic
modeling of this robot has been the movement of a
hexapodous insect. Analysing the movement of this insect
we’ve got a data base which allowed the identification of
the variation laws for the generalized coordinates. This
problem is detailed in the paper [ 3].
The general kinematic model which allows the
displacement in the most general conditions is presented in
fig. 2.

Fig. 2. The general kinematic model

The structural synthesis of this model [1] led to the
feasibleness of manufacturing an experimental model
which faithfully respects the structure and the step
principles of the hexapodous insect (fig.3).

The experimental model has the capability to assure the
locomotion on plane ground, straight line, being driven by
a single motor.

To modify the mobility degree and to multiply the
locomotion possibilities we can easy introduce some other
motors because of the construction’s flexibility.
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\ [ w0s® 0 sin®
5 - sin ; 0 0 1
[Cxl=| 0 1 0 |=l0o 1 0 (26)
. T T -1 0 0
—-sin— 0 cos—
3 2 2
[ cosq, sing, 0
) [A]-'z]: —'Sinq2 COSqZ 0 (27)
0 0 1
Fig. 3. The experimental model =
100
In the paper it is proposed a structural model full [Cox]={0 1 0 (28)
compatible with the experimental one, for which, in a first 00 1
stage, we determine the kinematic parameters. =
1V. THE KINEMATIC ANALYSIS OF THE LEFT ( cosq; sing; 0
FORE-LEG [433]={~sing; cosq; 0 (29)
0 0 1
cos— (0 sin— 0 0 I
[Ciwl=| 0 1 0 |=l0o 1 0 (30)
—sin— 0 cos— R
| cosq, sing, 0
[Ags]=|—sing, cosq, 0 (31)
0 0 1
10 0
[Cs)=|0 I 0 (32)
0 0 1
Fig. 4. The model of the left fore-leg [ cosqs  sin qs 0
The connection’s order of the kinematic elements is: [4s:5]=| =sings  cos % (33)
0 0 1
Cp—1-2-3-4~-5-6
Cp—1'—-1-2-2-3"-3—-4"-4-5'-5-6'-6 [7 0 0
[Cssl=|0 1 0 (34)
The transformation matrices of the coordinates are: 0 0 1
cosx () sino 0 0 - )
[Cl=| 0 1 0 |=|0 1 0|es (“’f"ﬁ sings 0
—sinx 0 cose I 0 0 [45]=| —sin % cosqs 0 &3
0 0 1
cosq, sing, 0 The base changes are defined as follows:
[4p;]=|=sing, cosq, 0 (25) e o -
0 0 1 {WI,}=_CPI,HWCP} =4y, Hm,]

{"y}=cy Hm) )= 4y, {77}
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W7z ()=l dens (P} = [ e, 1,
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The position of the point Fg in the reference system
Co = ~ g 3 solidary to the pronot is:
. =C,C —[O,O,LC,] E{W‘,} (36) P

U
R R e T S i G s o e
e, =17, r; o —
+{r3}TE[ACp2]E{WCP}+{r4}TE{ACp3]E{WCP}+
r,=Cds =[0.R,, L} {7} (38) +{rst s He, s} s HPe, |+
_ - . S Y 4.6 BWe
rz={r2}Tf‘{WJ}={rz}TE[Acp1]E{WC,,} 39) {5} [[ CPG:I[{ Cp} .
7 = AgBg =[0,1,,0 [{Wz} (40) B.Velocities
n={ny 4} =1} § Ac,. {7, | 1) ves = oo J e 176, 5Y {Bews J 1,0 J{, 1+
1y =B5Cs =[0.13.0] {73} wn e s oy T b (Y oo [ ey {7 1+
o = () = (Y e [ ) @D Vs T ey Wb+ (56 T B [ e {7}
7, =CsDs =[0,L,,0]d7,} (44) (54)
The antisymmetrical matrices [AC pi], i=2,6 have the
s ={rs} AW} =1}  dcps P, ) 45)  following form:
13 = DsEy =[0,L;,0] (46) 0 W %y
(Bow |=| -0ty 0 oy (55)
s ={rs Y A5} ={rs} [ e s H } (47) W0y 0 0
WErf: ) L
S5 = EgF =[0,1;,0] 4} (48) O pi = Wil + Oy J+ Tk i=2,6
5, ={s, 17 dw;) = (5,1 7 49 0 7 -
Caith e E[ACMH CF} = [E]{—&z 0 rf}; i=26 (56)
(=l e Wi} =4 WP} 6O v

The following relationships can also be used:
{WZ} =l HCM HACPI]{@] ) [Acpz :I_{W_CP} o {n }T q}—tl’(?p.f—f] N {pr.iﬂ’ }TE{’F‘!] (57)

{WJ} =[5 J| Cox ];[AC p2:|{@} = [/fc o3 ]L{Wg;} (52) In such conditions the velocity of the point Fy is:
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(58)

(59)

C. Accelerations

Zo L P Y
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IV. THE MATHEMATICAL MODELS PROCESSING

Based on the above mathematical models it was
elaborated a calculus program which allows the processing
of the movement laws for each kinematic element, or
characteristic point, with respect to the reference system
attached to the insect’s body or to the world reference
system. The program is useful for getting the trajectory for
every point belonging to the body with respect to the world
reference system, or the path for every leg with respect to
the reference system attached to the body. The movement
laws of the coordinates in the kinematic pairs , established
by analysing the insect’s movement and the mechanism
geometry, have been considered as input data.

Further on, there are presented some of the variation
laws of the kinematic parameters (positions, velocities and
accelerations) for the left fore-leg.

1004

80

Fx_dB01

apl

20!
V 0z, 03 0

2ol

Fig. 5. The variation of the position r_x of the point F given the body
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Fig.6. The variation of the position r_y of the point F given the body
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Fig.7. The variation of the position r_z of the point F given the body
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Fig. 8. The variation of the velocity v_x of the point F given the body
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Fig. 9. The variation of the velocily v_y of the point F given the body
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Fig. 10. The variation of the velocity v z of the point F given the body
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Fig. 11. The variation of the acceleration a_y of the point F given the

body
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Fig.12. The variation of the acceleration a_z of the point F given the
body

V. CONCLUSIONS

It is noticed the present method in the paper being
very flexible, it can be wused in different structural
combinations. We've had in view to increase the kinematic
possibilities of the experimental model, counting on the
data base get through the morphological and kinematic
analysis of the insect’s biomechanism. Simultaneously it
was made the kinematic modeling and the simulation of
the robot’s movement in the 3D space using the package
programs Visual Nastran (fig.4). The method is useful for
a further modelling of the contact with the support surface
when the last element of every leg is considered to be
elastically.
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