Searching the World-Wide-Web with Learning Agents

Ioan Alfred Letia
Technical University of Cluj-Napoca
Baritiu 28, R0O-400391 Cluj-Napoca

Romania

letia@cs.utclyj.ro

Anca Marginean
Technical University of Cluj-Napoca
Baritiu 28, R0O-400391 Cluj-Napoca

Romania

anca@cs-gw.utcluj.ro

Abstract—Present day search engines are far from per-
fect because they retrieve a great number of pages from
different sources (reliable or not), and because they
sometimes return unexpected results. The search results
would improve if the search engine knew a set of reliable
sites where we are expecting to find good results. We
propose a server-side multi agent system that addresses
search problems like source reliability, time-constrains
and reducing the complexity. The agents learn degrees
of confidence for some sites of interest, starting from a
limited number of domains known as trustworthy and
updating them from future search results. These de-
grees of confidence are used to select where to search
next, considering that we are expecting to find more
promising results on the sites with a higher confidence
degree. Using input from the user, these degrees are
updated with every new search.

Keywords: agents, web search, confidence, prefer-
ences

I. INTRODUCTICON

The search process can be analyzed from different
perspectives: what to look for, where to look, how to
evaluate the likelihood that a page is a good result.

Searching the web for relevant and trustworthy infor-

mation is not an easy task. The number of pages re-
trieved is very large, they are not always what the user
was looking for, and they are often unreliable. Scarch-
ing only by keywords may not always be suitable for the
huge amount of information on the Web. Research in
the area is trying to improve the search process so that
a small number of good results from reliable sources is
returned.)

Because of the quantity of information available on
the Internet, finding something specific can be quite
a headache. This was the motivation behind the nu-
merous search engines used today. However, searching
through the entire web can be a difficult task. Most of
the problems encountered are related to complexity and
reliability. Therefore, the results returned by the search
engines are sometimes unsatisfactory, due to both their

Raluca Vartic
Technical University of Cluj-Napoca
Baritiu 28, RO-400391 Cluj-Napoca
Romania

rvartic@cs-guw. utclyj.ro

Mircea Tesa
Technical University of Cluj-Napoca
Baritiu 28, R0-400391 Cluj-Napoca
Romania

tesa@es-gw.utcluj.ro

big number and their unexpected content. Also, one
rarely really wants to search through all the various
topics debated on the web. These are the main rea-
sons extra processing of the search results is necessary
for better information retrieval performance. Possible
approaches include: Web Mining - extracting useful in-
formation from the set containing all the pages on the
Web; Classification of Web Pages - grouping similar
pages is done either manually or automatically; Build-
ing a Knowledge Base - mirroring the contents of the
World Wide Web; Using Learning Algorithms; The Se-
mantic Web - an extension of the current Web, with
support for databases in machine-readable form; Rely-
ing on Trust and Reputation; Creating User Profiles.

A significant amount of effort is being deployed to
enable more effective retrieval of Web information, as
well as new uses of the Web to support knowledge-based
inference and problem solving [1].

The need to evaluate user reactions when using au-
tonomous agents to assist with information centric
tasks on the Semantic Web gave birth to Nuin, an agent
platform that was designed for practical development
of agents in Semantic Web applications, based around
belief-desire-intention (BDI) principles [2].

One first approach to make the retrieval of Web in-
formation more efficient is to rank the pages based on
their relevance to a specific user, using contextual infor-
mation. The personalization of the search engine can
be made using a short-time user profile constructed by
a client-side application that captures current user ac-
tivities. This approach has the advantage that the user
is not directly asked for information, but the contextual
information allows ranking of results. [3]

Another approach is to learn hypertext classifiers
by combining a statistical text-learning method with
a relational rule learner. The statistical component al-
lows text characterization in terms of word frequencies,
and the relational component describes how neighbor-
ing documents are rclated to each other by the hyper-

63

links that connect them [4].

Research in Web information retrieval is already ex-
ploiting the use of agent. An example to support such
agent-based applications is Nuin, an agent platform
that was designed for practical development of agents in
Semantic Web applications, based around belief-desire-
intention (BDI) principles [2].

Our multi-agent system is tackling the problem of
source reliability by selecting a number of sites we know
to be trustworthy. As new queries are being addressed,
we are learning a confidence knowledge base, using the
user’s evaluation of the results.

II. THEORETICAL APPROACH

There are 3 stages in the execution of our application:
training, learning, ezploring. In the training stage, the
user rewards the pages that meet his/her interests, and
the system learns the comnmon features of these pages.
Then, in the learning stage, the system uses the Google
search engine to search the main sites set for results.The
resamblance of these results with the pages from train-
ing set is computed in a given limited time and used
to rank the results. The user offers rewards for the
results he/she considers good. Instead of the learning
stage, the user can point the application to perform ex-
ploring. The sites with high confidence values will be
searched first and the search results will be displayed in
the order they are retrieved. The user can offer rewards
for these results too. The rewards given by the user in
the second or third stage are used to update the con-
fidence values for sites. The algorithm used for these
updates makes use of reinforcement learning and will
be described in section 2).

A. Hypertext Processing

The text of a Web page is an essential resource for
retrieving information. A hypertext can be viewed
from. different perspectives: the Gross Text; the An-
notated Text; the Language; the Knowledge Conlained
in the Text; the Hypertest Graph Structure; the Dis-
played Tezt. There are many ways to retrieve hypertext
information. Work in the area includes: formal meth-
ods - exploiting the content and the graph structure,
link analysis, algorithms and heuristics for searching
hypertezt, extraction and ezploitation of metadata. We
are tackling the task of information retrieval by pars-
ing web pages and remembering information about the
words and the links in the hypertext. The resulted bag
of words contains unstructured information on the most
relevant words and the number of times they occur in
the text. The relevant words are selected by eliminating
common words, words containing digits, words shorter
than 3 letters or longer than 19. This information is
stored on files, one for each page.

8 seconds

FPlease provide positive revards for the pages you are fnterested in
Found 26 results for query: “artificial intelligence” course

results | - 10)

5 225! Probabilistic Models in Artificial intelligence Retrard

hitpyferenwatanford edu/elass/cs228 / Fo
CS.228 Probabilistic Mcdets: in Artificlal Intelligence Winter 2004

Handout #1: Course Information Course Information. Lecture: 3 ... i ;
3

CS 228: Probabtlistic Models In Ariilicial Intelligerice (Course .. Reward
aFapy stanford edufclass; fevllabis htrol &0
228 Probabilistic Models in Artificial [ntelligence Winler 2004 Handout 1
#2. Tentative Course Syllabus. Approximate Syllabus, (updated 1/6/2002), ... ra
3

Fig. 1. Providing rewards

B. Learning Confidence Values for Sites

As one can see in figures 1 and 2, the user is the one
providing rewards for the search results. The system
uses this information to build an ordering of the selected
trustworthy sites. We are considering that certain sites
are more likely to contain good results on a global basis.
The system assigns numerical ’

quantifiers to measure the likelihood that searching
a specific site would yield good results. These results
are updated accordingly with every new search.

For example, if the user expresses interest in the
courses on a certain site, there is a high probability that
the user will also find research topics and lab activities
on the same site interesting,.

1) Action Selection Policy: As we need to retrieve
information in a given time, we must ensure the most
promising results are processed first. We define an ac-
tion as pointing the system to process the next result
from a certain site. Thus, the number of actions is equal
to the number of sites we can conduct our search on,
namely the number of sites in our set of selected sites.
We are using the confidence values maintained for these
sites to select the next action. Applying a greedy policy,
the site with the greatest confidence value is selected.
After processing, the temporary confidence value for
the given site will be decreased by a factor e

C(site) = e C(site) (1)
To be noted that these updates are pexformed on tem-
porary variables, they have meaning on the current
search only, and they have no effect on the overall con-
fidence values.

S 672 Advanced Artificla] Intelligence - Spring 2001
it /A, 08, cormel ll&g@m&. 2420025/

Reward
.. Anniouncements. 01/29/02. Homewor k-1 to'be handed out on Thursday. Fo
Pre-réquisites. . ()
‘Thie pre-requisite fof the eourse Is CS A72 (Artificlal Intelligence). Grading. .., w2

3

Fig. 2. Submitting rewards

64

2) Applying Reinforcement Learning: We have used
a simplified reinforcement learning method. We are in-
terested in the value we get from performing a certain
action. Unlike the reinforcement learning model, we
are considering that actions are not taking us from one
state to another. We are using the following formula to
update the value of performing a certain action:

Q(s.0) = (1~) * Q(5,0) + » (r + 7 ¥ maz(Q(s.4"))
: (2)

The o parameter is the learning rate, which indicates
how quickly the system learns, and + controls the rela-
tive importance of future actions. r is the reinforcement
signal, maz(Q(s,a')) is the maximum value that can be
attained by performing an action after a has been exe-
cuted.

The system can adapt to changes in the environment.
Thus, if one site is temporarily unavailable, the function
that computes the resemblance between that page and
the positive results from the training set will return a
low value, and hence the page will be displayed among
the last results. This means there is a small probability
that the user will reward the page, and conscquently
the action of searching that specific site will have a de-
creased value.

C. Agents

The application comprises many different tasks,
therefore we designed it as a multi-agent system, with
agents specialized for performing simple tasks. At this
point, we needed to integrate our agents in a framework,
to enable cooperation between them.

The Open Agent Architecture (QAA)! is a multi-
agent framework that focuses on cnabling flexible in-
teractions among a dynamic community of heteroge-
neous software agents. The key idea in OAA is delega-
tion: instead of each agent hard-coding its interactions
(method calls or messages), explaining how and who
it will interact with, OAA agents express interactions
in terms of needs delegated to a Facilitator agent. A
Facilitator agent will coordinate the agent community
in achieving the task, providing services such as paral-
lelism, failure handling, and conflict detection that each
client agent does not have to worry about itself.

1) The Multi-Agent Systemn: In figure 3, one can
observe the main system interactions. It can be easily
noticed that all requests go through the Facilitator, who
than chooses the most appropriate agent to perform
the task. The following interactions can be noticed:
the Search Agent that queries the Google Agent on a
string input, the Url Agent that asks the Parse Agent
to process a search result and the Url Agent that asks
the Disk Agent to store the results on disk.

In figure 4 we can see a classical sequence of execu-
tion events. First, the user is entering the query, and

! hetp:/ /www.zisri.com/ oaa

Wy
4

i
Facilitator - i
E . ? Store_results ,; §

W i
Y iy
W \ !

Fig. 3. Overview of system interactions

the search is performed on the sites in the training set.
All results are displayed, and the user selects the results
he finds satisfactory. The Parse Agent is then parsing
these sesected results, and stores information referring
to the words and links occurring in the page on a file on
disk. Then, the user points the system to start search-
ing on the main set of sites. These search results can
be processed. The user specifies the number of minutes
he/she is willing to wait, and points the system to start
processing. Based on the reputation degrees, the Page
Learner agent selects an order to process url-s. When
time’s up, the processed results are displayed, ordered
by how much they resemble the good results found in
the training phase. In the final stage, the user evaluates
these results. The rewards inputed by the user for the
results are used for updating the reputation values.

D, The System as o Web Application

Since the system deals with and uses the web, the
decision to design the user interface as a web application
came naturally. In the future, we are thinking about
including all the necessary features to publish it on the
Internet. At this time, we are deploying the application
on Apache Tomcat web server. Searching is done simply
by typing the search query in a text field and pushing
the search button (or simply pushing the enter key).

We are using the following solvable to interact with
Google:

google_search(+STRING: GoogleLicenceKey,
+STRING: GoogleSearchString,
+INTEGER: MaxNoResults,
~STRING: ResultTitle, —-STRING: ResultURL,
~STRING: ResultSnippet)

65

e
search

JoogisSs! sl:h(lnaryf

ik [Sosimin | [| [| [| it | [|
. : 4 g o

i

parseli]

Start Léaming|
i ————

e Progess

parseln

submit results

Blere_resuits

Fig. 4. Sequence diagram

E. The Search Agent

This agent addresses queries to the Google Agent and
formats the result. It is used both in the training phase,
to call the query on the test sites, as well as in the
second phase, when we are searching through a bigger
portion of the web. This agent is also responsible for
splitting the results in groups of ten and formatting the
text in order to be displayed in a friendly manner in the
browser.

F. The URL Agent

This agent can be used to: point the Parse Agent to
process a URL, ask the Parse Agent for the most fre-
quent words occurring in the pages selected as promis-
ing from the training set. point the Disk Agent to store
the results on disk and clean the newLearn directory,
point the Disk Agent to clean the newLearn directory,
making it ready for a new search

G. The Parse Agent

This agent is used to parse URL-s and store the re-
sulting files, retrieve the set of words occurring in most
of the rewarded pages in the training set, get the words
from a file resulted from parsing a URL, compute the
resemblance between the words in a newly processed
URL and the words encountered in the training set:
The formula for computing the resemblance between a
Web page and the positive results from the training set
is given below:

resemblance(page, training_set) =
no-elements(most_frequent.words(training._set)
Nget_words(page))

where resemblance returns the number of words re-
sulted from the intersection of two sets of words,

most_frequent_words is applied on a number of sets of
words returns a set of words representing the words oc-
curring in most input sets, and get_words is applied on
a Web page and returns the most relevant words in the

page.
H. The Page Learner Agent

The Page Learner Agent performs the following
tasks: it retrieves the confidence values associated to
the set of sites selected for processing, points the Parse
Agent to parse a URL, points the Parse agent to retrieve
the words of a file resulted from processing a URL, point
the parse agent to compare the words occurring in a file
to the most frequent words occurring in the training set,
to see how much they resemble.

I The Disk Agent

This agent is used to store the search results, and
store and retrieve the site confidence values.

JII. EXPERIMENTAL RESULTS

We set up an experiment for the query: “artificial .
intelligence” course. We are expecting as results home
pages for artificial intelligence related courses at differ-
ent universities. Notice that the word course may have
different meanings: university course, course of action,
soup as main course.

First, we ran the query directly on Google. There
were 656,000 results returned in 0.35s. We analyzed the
first 140 results, and found that 65 (46%) were indeed
what we were looking for. The positive results came
from more than 40 web sites.

If we use the Google agent for the same query, our
search will be limited to just 10 results. These results
will be the same as the first 10 results displayed by
Google. We are in fact extending the Google agent’s
capabilities by performing one search for one site, and
thus retrieving a maximum of 10 results per site, for a
total of maximum 10 * NumberO f Sites results.

Then, we tried the same query on our system. In
the training phase, we got 21 good results out of a to-
tal of 26 (80%). We offered positive rewards for those
21 results that met our criteria, and started the search
on the main set of sites. The search took 30 seconds,
and returned 141 results, out of which 60 (42%) were
found satisfactory. At this stage, we wanted to pro-
cess these resulis, so that the most promising results
were displayed first. This being the first learning stage,
we considered all sites had equal chances of containing
good results. The processing took 15 minutes and the
search results were reordered. We found that our ex-
pectations were met, and most of the results considered
good were repositioned among the first results, as it can
be seen in figure 5.

Correct,
tesulls

Google

N O g te
100% Qur system

+0%

0 20 30 40 58 60 700 B0 90, 100 11O 120 (30 140
< Rumber of results

Fig. 5. Processing results

In the table T we have shown the distribution of the
significant results in the set of the displayed results pro-
duced by our multi-agent system (MAS) and those re-
turned by Google. As one can see, most of the signifi-
cant results are displayed on the first pages.

Overall, there is no significant difference between the
performance of our system and Google. But if we look
closely to the first 30 results, we can see that our system
has 80% accuracy, compared to Google’s 60%.

IV. CONCLUSIONS AND FUTURE WORK

We have outlined a system that proposes extra pro-
cessing of the search results returned from a limited
number of sites, in order to find the pages that best
meet the user’s interest. We have seen an example
where the first results returned by the system are supe-
rior to the results returned if we simply ran a query on

TABLE 1
PERFORMANCE OF SEARCH

Results of MAS | Results of Google

Index
1..10
11..20
21..30
31..40
41..50
51..60
61..70
71..80
81..90
91..100
101..110
111..120
121..130
131..140

e BN e G0 LD B GO O s e =T 00O
W RO O QO O =] Ot Ut L an GO

Google. In addition, we have the certainty that these re-
sults come from sites we considered worthy. The draw-
back that naturally follows is that this system as it is
right now can not find new areas of interest. This is
something we are hoping to amend in the future.

We are planning to improve these results by improv-
ing the comparison function between pages and by se-
lecting optimal values for « and in the learning stage.
The system will also be extended to include searches
in different areas. We are thinking about creating user
profiles, allowing different, types of users searching for
different things. A user would be able to configure the
sites he wants searched and the system would be able
to notify its users on changes in pages of interest.

Facing searching the WWW should not disregard sit-
uated agents [5]. Relevance feedback, which refines the
retrieval by utilizing user’s feedback history, has been
successfully applied to image relevance [6] and we in-
tend to apply it to various representations for concepts.
The semantic dimension [7] constitutes another hope
for improving significantly the user expectations from
search. Hierarchical reinforcement learning using multi-
agents is also a promising new line of research [8].

V. ACKNOWLEDGMENTS

Part of this work has been supported by a grant
from the National Research Center of the Romanian
Ministry for Education and Science (CNCSIS contract
528/2002). '

REFERENCES

(1] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery, “Learning to con-
struct knowledge bases from the World Wide Web,” Artificial
Intelligence, vol. 118, no. 1-2, pp. 69-113, 2000,

[2] Ian Dickinson and Michael Wooldridge, “Towards practical

reasoning agents for the semantic web,” in Second Interna-

tional Joint Conference on Autonomous Agents and Multia-
gent Systems, J. Rosenchein, M. Wooldridge, T. Sandholm,

and M. Yokoo, Eds., Melbourne, Australia, 2003.

Reddy Challam Vishnu Kanth, “Contextual information re-

trieval using ontology based user Cgroﬁle,” M.S. thesis, Infor-

mation and Telecomunication Technology Center, University

of Kansas, 2004.

M. Craven and 8. Slattery, “Relational learning with statis-

tical predicate invention: Better models for hypertext,” Ma-

chine Learning, vol. 43, no. 1-2, pp. 97-119, 2001.

[6] George Dimitri Kandaris, “Behaviour-based reinforcement

learning,” MsC thesis, School of Informatics, University of

BEdinburgh, UK, 2003.

Peng-Yeng Yin, Bir Bhanu, Huang-Cheng Chang, and An-

lei Dong, “Reinforcement learning for combining relevance

feedback techniques,” in Proceedings of the 9tk IEEE Inler-

national Conference on Computer Vision, 2003.

John Domingue, Martin Dzbor, and Enricoi Motta, “Magpie:

Supporting browsing and navigation on the semantic web,” in

Proceedings of the Conference on Intelligent User Interfaces,

Madeira, Portugal, 2004.

Rajbala Makar, Sridhar Mahadevan, and Mohammad

Ghavamzadeh, “Hierarchical multi-agent reinforcement learn-

ing,” in Proceedings of the 5th Iniernational Conference on

Autonomous Agents, Montreal, Canada, 2001.

3

[4

—
[=2)
—

[7

0

67

