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Abstract — Among the latest devclopments in simulation
techniques, the “Neocortex” simulation environment is based
of modern design principles. We present the most important
abstractions and building blocks of the system and deseribing
the solutions that overcome many computational challenges
of neural simulators. Also, we refer to the scalability of the
simulator during the tracing of large neural architectures
with different levels of modeling detail.

I. INTRODUCTION

As it has been previously emphasized [8, 9], neural
simulators face many challenging problems, especially
when the simulated models are large, containing thousands
of ncurons and millions of synapses.

When designing a neural simulator, we should first
understand the problems it has to deal with, when the
complexity of the model is really high (usually when the
model / the detail level of the electrophysiological model is
large / high). The main aspects to take into account are [9]:

e the speed of simulation;
e the required memory;
e the accuracy of the simulation.

Although these aspects are usually in conflict (eg.:
increasing the accuracy decreases the speed), tradeoffs can
be found in many cases. The possibility of configuring the
simulator for these tradeoffs depends on its flexibility.
Interfacing of different units with different modeling
detail, using different simulation techniques like event-
driven and iterative, at the same time, can greatly improve
the simulation performance.

The most recent neural simulators either lack generality,
like “SpikeNET” or “RetinotopicNET” [3, 8] or they lack
flexibility, like “Neuron” or “Genesis” [1]. In the former
category, the design of the simulator is committed to some
particular type of neural models, a solution which seems to
greatly improve the speed of simulation and reduce the
memory consumption. On the other hand, simulators in the
latter group, are more general, allowing for many levels of
detail for the neural models. It turns out that this very
generality slows down the entire simulation and increases
the required memory. Only small networks of neurons are
fit for these simulators. A flexible neural simulator could
take advantage of some particular aspects for modeling the
large populations where detail is not an issue and, at the
same time, it could interface these modules with more
detailed ones, where accuracy is critical for the study of
neural dynamics. Such an interface could be possible if:
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» there is data compatibility between the
different representations of the models;
°* we implement processing compatibility,
which means that event-driven and iterative
processes can synchronize and exchange data.
Having made these observations, we set out to build a
novel generation of simulators, starting with “Neocortex”.

II. METHODS

We tried to build a neural simulator that lakes advantage
of modemn design techniques and maximizes flexibility.
“Neocortex™ is based on the following principles:

l. it is able to model different types of spiking
neurons, with different detailing;

2. static and dynamic synapses, with or without
plasticity, with temporal or a-temporal dynamics,
can be implemented;

3. neurons can be grouped together using some
criteria, and there are group management functions
implemented,

4. the required simulation memory is minimized by
avoiding redundant data representation, synaptic
sharing, and the extensive use of object association;

5. both implicit and explicit synaptic connections can
be implemented;

6. the simulation can be event-driven for determi-
nistic analytical models, or iterative;

7. event-driven and iterative simulations can coexist,
data exchange between modules being implemented
in the simulator;

8. class inheritance is avoided and inline function
expansion is used to a maximum extent;

9. flexibility is maximized by allowing different
models, simulation techniques and modularization
levels to coexist at the same time.

A. Data representation - modeling

“Neocortex” is written in ANSI C with object C++
extensions. The entire design is chject-oriented, however
generalization and specialization being replaced by
association.

The most important classes are the SpikingNeuron and
the SpikingSynapse. Each of these classes store only a
minimum amount of information, which relates to the
dynamical state of the entity. For example, the
SpikingNeuron stores only the membrane potential, a
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recovery variable (used in reduced bi-dimensional models)
and a spike triggering state (which indicates the presence
of a spike during the present time slice).

Apart from the dynamical state of the entity, each
instance of the SpikingNeuron or SpikingSynapse
maintains a pointer to a so-called “Property Class™ object.
For neurons we have the SpikingNeuronClass and for
synapses, the SpikingSynapseClass. Each of these property
classes store the exact parameters of a whole range of
neuron or synapse types. As an example, we might have a
“RegularSpikingNeuron” object which specifies the
electrophysiological parameters of every regular spiking
neuron in the model. Independent of the number of
neurons, we always have only one property object for a
given neural fype, that describes the information shared by
all the neurons of the given type. In this way, redundant
information is concentrated into one single representation
and memory consumption is greatly reduced. We make
sure that each neuron and each synapse use only the
minimum amount of memory that is required for
representing its dynamical state.
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Fig. 1. The SpikingNeuron and SpikingSynapse classes and the associated
property classes which represent the shared information among a class of
neurons or synapses (eg. regular spiking neurons or STDP synapses).

In the present implementation, the researcher has 3
available neural models to work with: the linear additive
integrating neuron (with no leak and no refractory period
[8]), the leaky Integrate-and-Fire (IF) neuron model (sce
Dayan and Abbot [2]), the model of Izhikevich [5]. The
integrative models are uni-dimensional and use only the
membrane potential to represent the dynamical state of the
neuron. The model of Izhikevich, is a reduced bi-
dimensional set of differential equations that is integrated
with 1 ms time step, using the Euler method.

The synaptic modeling allows for the implementation of
static, dynamic and STDP synapses. In the case of static
synapses, a given, fixed current is injected as a delta pulse
into the target neuron as in (1) for each incoming
stimulation,

W, iff r= Iiﬂ_.spike

0, otherwise

PSC(t) = { (1

where PSC is the postsynaptic current, £, s.u. is the
moment of presynaptic spike and w is the weight of the
synapse.

For dynamical synapses, the PSC is time dependent and
is implemented as an alfa function [4]. Each time there is a
presynaptic event, the conductance g, is incremented by 1.
At the same time, the value of g is exponentially decaying
with a given time constant.

if (presynaptic _spike) then g(t) = g(t)+1

1
gh=g)*e © (dtis1ms) , @
PSC(r)= A*w*g(n)* (Esyn —u(r))

where g is the time dependent conductance, 4 is the
maximum PSC amplitude, w is the synapse weight
(between 0..1), E,,, is the reversal potential for the synapse
(typically 0 mV for excitatory and -90 mV for inhibitory
synapses), u is the time dependent membrane potential of
the postsynaptic neuron.
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Fig. 2. The postsynaptic current of a dynamic synapse. The presynaptic
stimulation is generated by a 60 Hz spiking neuron.

For the spike-timing dependent (STDP) synapses, the
synaptic weight w is not fixed any more but time
dependent w(z). The time dependent plasticity algorithm
implemented here is based on the synaptic release
probability, inspired by the model of Senn and Markram
[10].
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Fig. 3. Synaptic release probability for a STDP synapse

The dynamics of the STDP variables are computed
using an additional associated object, called STDP-
Variables. Only STDP synapses have an associated STDP
variable object, so that the representation of the generic
synapse 1s as compact as possible. When the type of the
synapse is STDP, the simulator uses the STDPVariables
object to compute the value of the synaptic weight w(t). At
the same time, it computes the new values for the STDP
variables.
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B. Neural maps

Neuron and synapse objects can be created and managed
by the user. However, there is an additional abstraction
layer that can be used to formalize better the concept of
neuronal group (we refer here to neural grouping as a
physical segregation process). As in the neocortex, neurons
can be grouped together according to some criteria like:
receptive field properties, cortical layer and spatial
distribution, comnectivity, etc. Usually, neighboring
neurons are more likely to be involved in the same type of
processing so it is a good idea to group them together. A
group of similar neurons is called “neural map”.

The “Neocortex™ simulator allows the user to create
neural maps, which are two-dimensional layers of neurons
that can have external connections (with other maps)
and/or lateral connections (within the current map).

Each neuron in a map is uniquely identified by its
cartesian spatial position ¢x,y) (Fig. 4).

Fig. 4. The matrix-like structure of a nenral map

Using neural maps is especially useful when modeling
hierarchical systems like the visual cortex [7]. At the level
of the neural map, many management functions can be
implemented, liké cleanup, reset, ctc.

There is an additional advantage in using maps to group
neurons. When connections between maps are retinotopic
and static, one can take advantage of synaptic sharing. The
user could then define a rule of connectivity between
maps, which is called implicit synapse representation.
Implicit representations of synapses are also called
synaptic kernels and are usually matrixes that contain the
spatial distribution of the synapse weights (Fig. 5).
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Fig. 5. Implicit synapses between two retinotopically connected maps

Whenever the value of a synapse is required, a
correspondence algorithm is applied, which takes the
position of the afferent and efferent neurons as an input
and determines the exact value of the synapse from the
synaptic kernel [8].

We have to mention that implicit synapse representation
can only be used when:

¢ all the neurons in a given map share the same
receptive field profile;

o the receptive fields of the target map neurons
are retinotopic like;

o the user is not interested in dynamical synapses
(between the two maps) and a simple additive
PSC is sufficient for simulation.

Maps can be configured to automatically generate
implicit synaptic kernels based on given kernel functions.
At the same time, when the user is interested in using more
elaborate models of synapses, with dynamic states, the
simulator can automatically generate explicit synapses
based on a kernel function,

=(x* +y%) ~(x*+y%)

Ke_s(x,y)=onGain-e 2oy offGain- e 2.0, 3)

In (3) we present an example of center-surround
gaussian kernel function, Depending on the gains
(on/offGain) and the standard deviations (o, ,), mexican-
hat or other profiles can be obtained.

C. Simulation techniques

Most of the simulators used today are based on iterative
simulation. The user defines a time step, which can range
from sub-milliseconds to tens of seconds. Depending on
the models that are used, the time step should be chosen
appropriately so that the integration of the differential
equations minimizes the error and maximizes the
integration accuracy. However, choosing too small time
steps might not significantly increase the accuracy while it
increases the simulation time for sure.

During iterative simulation, the state of each dynamical
variable is updated for every time step. So to speak, the
present state of each neuron / synapse / variable is
computed from the previous state and it is used to compute
the next state. An important observation if that for
simplified models, like the linear additive or the leaky
integrate-and-fire neuron, there is deterministic behavior
between time steps, given that no PSC is injected in the
neuron during this period. In these cases, the state of the
neurofl can be computed with 100% reliability from any
previous state, if the neuron hasn’t been stimulated since.

In (4) you'll find the update formulas for the linear
additive (LA) and leaky IF neurons, computed from a
previous state (f,). This only holds if the neuron hasn’t
been stimulated since 7,

Upa())=Up(t,)
_(I_rp) H] (4)
Up)=Ur +(Up(t,)-Ug)*e *

where Uy, is the membrane potential of the linear additive
neuron (without leak and without refractory period), Ujx is
the membrane potential of the leaky integrate-and-fire
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neuron, Uy is the resting potential of the IF neuron, t is the
membrane time constant of the leaky IF neuron.

When the state of a neuron, or more generally of a
dynamic variable, can be analytically computed from any
previous state, given no external interference occurred
since the previous state, event-driven simulation can be
implemented. With this technique, the state of a variable is
updated only when its value is required in a calculation or
when an external event changes the state of the variable.

For the case of neurons, the state of event-driven
neurons is computed only when there is an afferent
stimulation that changes the state of the neuron. In such a
case, the 7~/ state of the neuron is first computed and then
the stimulation is applied during the current time slice (¥).
Although event-driven simulation can greatly reduce the
computational effort for large networks, it is only usable
for neural models which allow for the analytical
integration of the state equations.

In “Neocortex”, the event-driven simulation is based on
the spike events. Instead of computing each neuron’s state,
the simulator processes spike lists. It takes all the spikes
that were generated during the previous time step and uses
those spikes to update only the neurons that are affected by
the spikes. However, such spike-driven simulations are
only allowed for static synapses and linear additive or
leaky integrate-and-fire neurons.

When dealing with large neural systems, researchers
may choose to employ different types of models within the
same architecture. They might use simple IF neurons for
the majority of modules, while complex models only for a
few, but critical, neurons. In such cases, iterative and
event-driven simulations have to be compatible. Such a
compatibility is implemented in the “Necortex” neural
simulator.

The “Neocortex” simulation environment uses a global
clock with 1 ms resolution. During each time step, all the
iterative maps and synapses are updated. At the same time,
for event driven maps, the lists of previous spikes are
processed, only those meurons being updated that have
synapses with the previously active neurons. Compatibility
with the iterative maps is assured by calling the update
triggers of efferent iterative neurons when a spike-driven
neuron fires (Fig. 6).
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Fig. 6. Interface between event-driven and iterative simulated maps

Also, when a neuron in an iterative map spikes, a spike
event is injected in the afferent spike list of the
corresponding efferent event-driven map. The global
synchronization clock is used both in the iterative
simulation and the event-driven updates. The only
difference is that in the event-driven case, only the neurons
that are affected by the previous spikes are updated during
the current iteration.

D. Programming details

From a computational perspective, we tried to maximize
the speed of simulation by:

e minimizing the complexity of address
calculation during the access to structures in the
memory;

e designing data such that caching mechanisms
can be effective;

e using only single precision 4 byte floats;

e avoiding virtual functions;

e using massive inline function expansion.

In addition to these techniques, for the event-driven
simulation, we used a so-called “accumulation matrix”
which stores the PSC computed during the current
iteration. First, all the spike events are processed and for
each spike-event, instead of updating the state of the target
neurons, an effective PSC is accumulated. After all the
spikes have been processed, we use the PSC matrix to
update the affected neurons (which have PSC #0). Such a
strategy avoids multiple integrations of the state equation
during the same time step, thus accelerating the
computation.

Objects communicate with messages that are usually
inline expanded functions. Also, we cache addressing
invariants before large “for loops™ in order to make sure
that the compiler doesn’t use unnecessary indirections (eg.
if we have p->array and we use this address in a large for,
we first cache a_cache = p->array and use a_cache[i] in the
for loop). We have to mention that such caching is very
effective for many older C++ compilers since they do not
usually recognize loop invariants.

The processing stream of large arrays of neurons follows
the “change the column and then the line” sequence in
order to maximize locality and favor caching. The most
important variables are forced as “registers” whenever
possible, in order to maximize availability for the CPU and
minimize memory accesses.

An important observation is that the speed of simulation
is greatly improved by such simple programming
techniques. When used in conjunction with event-driven
simulation and implicit synaptic representation, the speed
of simulation can be accelerated thousands of times,
making a desktop PC fit for the simulation of millions of
neurons with billions of synapses, in real-time [8].

II. RESULTS

We used “Neocortex” for various types of simulations,
from simple architectures with only a few neurons, to
models with thousands of neurons and millions of
Ssynapses.
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Fig. 8. Time trace of a population of 10 neurons from a neocortical microcirceuit.

In general, many neural models lead to simulation
problems that are NP-complete, with an exponential
explosion of computational effort and required memory
(which is mostly the case for the » fo »n connectivity
networks). However, if simple models are used, that are fit
for event-driven simulation and implicit synaptic
modeling, the complexity becomes polynomial or even
linear.

We will refer next to the scalability of “Neocortex”, that
is, the increase of the memory consumption and simulation
effort with respect to the number of neurons in the model.
Usually, the complexity of the problem of simulation is a
function of the number of neurons since the number of
synapses is influenced also by the number of neurons.

The required memory for simulation is dominated by the
synaptlc representation component (since there are usually
10° - 10" times more synapses than neurons [6]). There is
also a neuron memory component. Let My, be the synaptic
component, M, be the neural component of the global
Mipq memory consumption  (we exclude here the
additional components that do not depend on the number
of neurons or the insigrificant memory consumption).

For the case of implicit synaptic representation, the
synaptic memory component is constant or it depends at
most in a linear way on the number of neurons:

M =k; M =k*n, (5)

syn _imp syn_imp

The memory overhead is constant when the receptive
field sizes are fixed and do not depend on the size of the

maps. In such a case, we only need to represent the fixed
size connection kemels between maps. However, there are
cases when the receptive field size increases with the size
of the maps, leading to a linear increase in the size of the
receptive fields with respect to the number of neurons.
Even in the case of all-to-all connectivity, because of the
synaptic sharing, the increase in synaptic memory is linear.

When the synapses are explicitly represented, the
memory consumption is much higher. Usually, receptive
fields have fixed profiles and fixed sizes so that the
memory increase is almost linear (k can be quite high).
However, in the all-to-all case, the required memory grows
rapidly with the increase of the map sizes (6).

Msyn_cxp zk*n; “'W.syn_cxp zk*nzr (6)
Usually, both explicit and implicit synapse

representations induce a linear increase of memory. The
main difference however is the slope %k of the linear
increase. For the explicit synaptic representation case, & is
usually very high (5000 bytes is a normal value).

The representation of neurons requires M, bytes of
memory. Obviously, M, is lincarly dependent on the
number of neurons (7).

M nrm = kmode! *n ’ (7)

where k4, depends on the exact neural model chosen. In
“Neocortex”, k.4 1 constant due to the separation
between the model description and the dynamic variables
that describe the state of the neurons (kg = 24 bytes).
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The total memory overhead is:
Mg.’oba! = Msyn il Mnrrr » (8)

For the case on implicit synaptic representation, the total
memory consumption is mainly dominated by the neural
component. More, when the receptive field sizes are
constant and the number of maps is fixed, the synaptic
component is constant too, and small.

However, for explicit synaptic representation, even
when the receptive field sizes are kept constant, the
memory requirement for representing synapses dominates
and quickly grows (Fig. 9). When the receptive field sizes
depend on the number of neurons or the number of maps
increases, the synaptic memory component quickly
explodes.
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Fig. 9. Tolal memory consumption for a hierarchic architecture with fixed
receptive field sizes, For explicit representation of synapses, the system
quickly exhausts the available memory of a desktop computer and also

slows down simulation because of frequent cache invalidations.

When event-driven simulation and implicit synaptic
representations are used, the simulation is significantly
accelerated, real-time simulation of large networks being
possible on desktop computers.
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Fig. 10. Dependence of the simulation time on the number of neurons and
on the type of simulation / synaptic representation.

We tested the simulator with a 3 layered neural
architecture (Fig. 10) and an average receptive field size of
50 units. We used the leaky IF neuron model. First, we
wired up the neurons wusing implicit synaptic
representations, Then we simulated the model using the
event-driven techmique. Because of the small memory
consumption and the selective updates, the system is
performing very well on a normal desktop computer (few
seconds per simulation).

When the same architecture has been penerated using
explicit synapses, the memory overhead significantly
increased. At the same time, we used iterative simulation
to test the system’s performance in this case. Because of
the large memory allocated, caching mechanisms become

un-effective and further increase the simulation time. The
iterative strategy makes lots of unnecessary updates so that
the simulation slows down very much.

As a comparison, for 50000 neurons and 2.5 million
synapses, the implicit/event-driven simulation is performed
in 17 seconds, while the explicit/iterative simulation is
performed in 449 seconds. The simulation results are the
same in both cases but the implicit/event-driven simulation
is accelerated 26 times in comparison with the
explicit/iterative simulation.

We conclude that the best strategy is to use simple
models for the large populations of neurons and employ
event-driven simulation with implicit synapses whenever
possible. At the same time, the critical modules can be
modeled with refined detail and interfaced with the larger
populations to yield both speed and precision. Flexibility
seems to be the most important quality of a neural
simulator.
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