Training Feedforward Neural Networks with a Modified
Genetic Algorithm

D. I. Abu-Al-Nadi
Department of Electrical Enginecring
University of Jordan
Amman - Jordan

dnadi@ju.edu jo

Abstract - A genetically evolved weight aggregation
technique is proposed for training feedforward Neural
Network. This technique does not need differentiable
performance indices as most numerical optimization
techniques do. Hard limiters thresholds can be used
instead of the differentiable logsigmeid and tansigmoid
functions used in backpropagation. The floating point
genetic algorithm needs to specify the solution space in
which the genetic search will try to find the optimum
solution. This technique doesn't specify the solution space
of the weights. It specifies the ranges of the perturbations
of the weights which will aggregate to find the optimum
weights for the network.

I. INTRODUCTION

The feedforward multilayer neural network (MNN)
trained by the backpropagation algorithm, is currently
the most widely used neural network [1]. The research
on faster backpropagation algorithms falls roughly into
two catcgories; The first involves the development of
heuristic techniques and the second focused on
standard numerical optimization techniques [2].
Recently Genetic Algorithms (GA), as unconventional
optimization techniques, have been emerged with
Neural Networks to be an alternative to
backpropagation where no differentiation of the
evaluation function index with respect to the weights is
needed [3,4]. Moreover, i this technique no
restriction should be made on the type of the threshold
functions used for the neurons, while for
backpropagation the threshold functions have to be
differentiable.

The regular floating point GAs need to specify the
solution space in which the genetic search will try to
find the optimum solution. The range of the solution
space is not an easy task, to be done it needs an expert
user who knows very well the problem to be solved to
decide on this range [5], [6]. The proposed technique
does not specify the solution space of the weights of
the MNN. Tt specifies the ranges of the weights
perturbations which will aggregate to find the optimum
weights of the MNN.

Weights of the MNN will be aggregated in iterative
steps. In each iteration a genetic search will be
performed to find the fittest perturbation vector which
will be aggregated to the weight vector of the previous
iteration, The resulted new weight vector will have the
best performance index. Iterations will continue until
the maximum number of iterations or until the

105

performance index exceed a prespecified tolerance.
The rest of the paper is organized as follows: In section
2, the proposed algorithm is presented. In section 3
numerical examples and discussions are included to
demonstrate the abilities of proposed algorithm, finally
conclusions of this paper are given in section 4.

II. THE PROPOSED ALGORITHM

For multilayer networks the output of one layer

becomes the input to the following layer. The
cquations that describe this operation are:
amH =fm+i (Wm+l a™ bm+!) (1)

form=0,1,..., M-1

where M is the number of layers in the network. The
neurons in the first layer receive external inputs:

@)

which provides the starting point for Fig. 1. The
outputs of the neurons in the last layer are taken on the
network outputs:

a=aM &)

Let us preset the weights and biases of MNN as the
following parameter vector:

X:[Xl XZ "‘XN] (4)
}><=[Wl{1 Wi o Wh B bl W ..bg”m} s)

where

N=S'R+1)+8? (8" +l)+..+SM M +1)

W;" : The weight between the jith neuron of the
(m — 1) th layer and the ith neuron of the mth
layer.

b : The bias of the ith node of the mth layer.

sm : Number of neurons in the mth layer.

Training the network is based on aggregations of the
parameter vector X as follows:

(6)

where

(M

is the parameter vector at the ki aggregation step and

YE=lyk. v ()

is the parameter vector increments at the kth

aggregation step.

In this work GA's are used to find the best vector of
increments Y such that X will be optimum. This
modification gives better rates of convergence and
overcomes the problem of restricting the solution space
which is inherent in GA's.

The GA technique used floating-point numbers to
make up the sequence of genes for each chromosome.
For the selection of individuals, normalized geometric
ranking was adapted for this application [6]. There are
two basic types of operators, crossover and mutation.
They create new solution based on existing ones.
Operators for real-valued representation have been
developed in [5]. Heuristic crossover and multi-non-
uniform mutation operators are used. The GA must be
provided with an initial populationP,, it is usually
done by randomly generating solutions for the entire
population within the search space. Termination
mechanism for the search of the best individual should
be provided, usually the search will be stopped if the
maximum number of iterations is reached, or if the
solution exceeds some tolerance based on the
evaluation function.

The evaluation function or better named the fitness
function in GA is a vital part of this type of
optimization. Individuals having the highest values of
fitness will stay for the next generation and the others
will be discarded. GA is usually designed for
maximization. If the optimization problem is to
minimize a function f(x), it is equivalent to maximize

a function g, where g(x) =—f(x),ie.
®

min f(x) =max g(x) = max {-{(x)}

The evaluation function is chosen to be the mean
square error. The algorithm is provided with a set of
examples of proper network behavior:

{Pl:tl}s {PZ ?tZ}}"- ’{PQ:tQ}
=38, -2, =3, (D=3 (e) (10)

where aq(Y") is the actual cutput of the network at the

kth iteration when £, is the input.

106

One major advantage of GA is that the fitness function
does not have to be differentiable. Even the threshold

functions for each neuron ™' do not have to be
differentiable in the case GA is used for optimization,
The optimization process in this case is to find the best

individual Y* which will be used in Eq. (6) to
minimize J (Y*).

The proposed algorithm will proceed as follows:

1) Initialization
- setmax _k=K,max i=1L
- setk=1.
- seti=0.
- Set X’ = random between (-0.5 , 0.5)
- Set ¥, =100 ... 0.

2) Randomly generate an initial population P, of
M individuals.

3) Include the individual Y, with the initial
population.

4) Evaluate the respective fitness for each
individual of the population using Egs. (6),
(5), (2), (1), (3) and (10).

5) Generate an intermediate population P, by
selection mechanism.

6) Generate a new population P, by crossover
and mutations operators on P,.

7) Ifi<I seti=1+ 1 and go to step 4; otherwise
proceed to the next step.

8) Usc the best solution Y& to find weights
using (6) and (5).

9) setk=k+ 1

ifk<K

- seti=0

- gotostep 2.
Else

- Use(2),(1)and (3) to finda (Y,).
End

As proposed in the algorithm, the large weights of the
NN are calculated by aggregating those small weight
increments.

[II. NUMERICAL EXAMPLES AND DISCUSSION

The first example is a function approximator. The
MNN is supposed to approximate the following:
T=sin{2nP) —-1<sP <] (1

The MNN used in this case has one input, 10 neurons
in the hidden layer, and one output. The range of
increment vector Y was initially chosen to be [~10,10]

and after K=50 it was reduced to[-5,5]. The
number of iterations used was
(Kx1)=(150%20)=3000 iterations. Both the

desired output (Solid line) and the MNN output
(dashed line) are shown in Fig. 1. The Learning curve,

i.e., the evaluation function versus the number of

iterations is shown in Fig. 2.

055

05

1 L !

1
02 04 06 08 1

15 1 1 1 } 1
408 05 04 02 0

Fig. 1. The desired function (solid Line) and the
MNN function approximator (dashed line) for example
1.

In the second example, it is required to identify the
dynamical system which is governed by the difference
equation:

y(m+)=03y@m)+0.6ym—D+g[u(n)] (12)

where g[-] is supposed to be unknown function and
has the form:

10 ! !

50 1000 0 20 20 3000
Fig.2. The learning Curve, ie., the evaluation
function versus the number of iterations for example 1.

g (u)=0.6sin (mu)+0.3 sin (3mu)+0.1sin Smu) (13)

In order to identify the dynamical system, a model
governed by the difference equation:

107

Ym+D=03§()+065(n-D+flu(n) (D

was used, where f [.] is a MNN with 30 neurons in the
hidden layer. Fig. 3-5 shows the outputs of the actual
system (solid lines) and the identification model
(dashed lines) when the training was stopped at
n=200,300and 400 respectively, where the

; S . ,
mputu(n)=sm(%). It 1s noticed that the

identification model follows the output of the system
more accurately as the training set increases.

The output of the system and the identification model
(solid and dashed lines, respectively) is shown in Fig. 6
for the input given in Eq. (15) after the identification
model was trained using random input uniformly
distributed between[-1,1].

mmg%ISnszm,mdSOSnS7w
25
u(n)=

(15)
sin(2™) 1405 snC>) 250 < n < 500
250 75

Fig. 3. Outputs of the dynamical system (solid line)
and the MNN identification model (dashed line) for
example 2 when the training stops at k =200.

The training was carried out for
(kxI)=(100%20)=2000 iterations. The MNN was

trained using [-10,10]as the range of the vector of

increments Y and then this range was reduced to
[-5,5]after K =50, The reduction of the range of the

increment vector has the effect of adaptive learning rate
in steepest descent techniques.

-Gﬂ 100

20 30 400 500 500 o

Fig. 4. Outputs of the dynamical system (solid line)
and the MNN identification model (dashed line) for
example 2 when the training stops at k =300.

[} T T ‘ T

ﬁ . 1 €]
0 100 il 20 400 50 610]

Fig. 5. Outputs of the dynamical system (solid line)
and the MNN identification model (dashed line) for
example 2 when the fraining stops at k = 400.

o

T

1w ™ W @ @
Fig. 6. Outputs of the dynamical system (solid line)
and the MNN identification model (dashed line) for
example 2 after training of the MNN for 2000
iterations using randorn input between [-1,1] and for
the input given in Eq. (13).

108

IV. CONCLUSIONS

A modified GA technique used to train MNN has been
presented. The technique adopted floating point
representation of chromosomes. It does not specify the
solution space of the weights, rather it specifies the
ranges of the perturbations of the weights which will
aggregate to find the optimum weights for the network.
This modification gives better rates of convergence
than the regular GA and overcomes the problem of
restricting the solution space which is inherent in GA's.

V. REFERENCES
[1) F. Ham and I Kostanic, Principles of
Neurocomputing for Science & FEngineering,
McGraw-Hill, 2001.

[2] M. Hagan, H. Demuth, and M. Beale, Neural
network design. PWS Publishing Company,
Boston: MA, 1996.

[3] V. Maniezzo, “Genetic evolution of the topology
and weight distribution of neural networks™,
IEEE Trans. On Neural Networks, vol.5, no. 1,

Jan. 1994, pp.39-53.

[4] R. S. Sexton and J. N. Gupta, “Comparative
evaluation of genetic algorithm and
backpropagation for training neural networks”,

Information Sciences, 129, 2000, pp.45-59.

Z. Michalewicz, Genetic Algorithms+Data
Structures=Evolution Programs, am edition,
Springer-Verlag: Berlin Heidelberg, 1996,

(3]

J.A. Joines and C.R. Houck,” On the Use of
Non-Stationary Penalty Functions to solve
Nonlinear Constrained Optimization Problems
with GA’s,” Proceedings of the I IEEE Int.
Conf. On Evolutionary Computation, Vol. 1.
Orlando, 27-29 June, 1994 pp.579-584.

