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Abstract ~ Genetic algorithms have been used to find
solutions to difficult optimization problems which are not
amenable to exact methods or whose solution times are just
impractical. GA’s are generally successful in finding a
solution or solutions which are normally termed as mear
optimal. The quality of the GA-produced solution is nsually
measured by comparing the GA solation with the known
optimal solution of small to medium size instances of the
problem. For large instances of the problem, this quality can
only be estimated subjectively. In this paper, we use a non-
linear assignment problem whose size can be made
arbitrarily large but whose optimal solution is theoretically
known, to test the effectiveness of the genetic algorithm.

L INTRODUCTION

Genetic algorithms [1] have been applied to a wide variety
of problems and they are known to be a good approach to
solving NP-Complete problems [2]. They are also very
good heuristic methods to find near optimal solutions in
acceptable solution times. Like all heuristic methods, the
quality of the GA solution cannot be judged except for
small to medium size problems.

In this paper, we use a problem whose size can be made
arbitrarily large but whose optimal solution is theoretically
known, to test the performance of a genetic algorithm. A
problem with such characteristics is presented and
described below.

Given two sets of sub-components with different
reliabilities: .
C={c.c2.c3
D={d,dds ..., dy}

We define a component of the system to be a pairing of
sub-components in set C to those in set D. The pairing of
the sub-components is called 2 component of the system
and is said to be functioning comectly if both sub-
components are functioning correctly.

A k-out-of-n:G system will consist of n such components
and have at least & of them working correctly.

The problem of assigning these sub-components from one
set to those of a second set, to maximize system reliability
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for a k-our-of-n:G system was first investigated in [3] as a
fault tolerant computer system. Leow [3] formulated the
problem as a non-linear assignment problem and they
showed that the optimal assignment of such a system was
invariant for any value of k and ».

In this paper, we use this result to reverse the roles of the
solution method and the problem to be solved. nstead of
using GAs to solve the problem, we use the problem to
evaluate the effectiveness of the method. The performance
metric of the GA is the ability to reach an optimal
assignment. The structure of this paper is as follows:
Section II presents the general formulation of the A-out-of-
n : G system and Section III describes the genetic
algorithm used for the experiments. In Section IV we
present the experimental results of our test cases and
finally in Section V, we draw some conclusions,

II. THE K-OUT-OF-N : G SYSTEM

The reliability problem of the k-out-gf-n : G system can be
formulated as an assignment problem as follows :

Instead of maximizing system reliability, we will minimize
system unreliability and we will also assume that the
individual reliabilities of the subcomponents can be
ordered as follows: '

C12C2e32
d)zdy>dy=>

The following notations are used in the formulation:
I:{L23.... .5}

Csf) : set of all distinet combinations of ] taken s at a time

1
xﬁ=0

if subcomponent i is assigned to

otherwise
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Zx,j =1
=1
xij = {O,l}

The first term in (1) is the probability of all components
failing and the second term is the sum of the probabilities
of 1,2,3,... (k-1) components functioning correctly.

For example, the 2-out-of-n : G system is formulated as

follows:

Min z(x)=ﬁll[(l—cidj)x”' 4

jal =1
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[I. GENETIC ALGORITHMS

Genetic algorithms (GAs) are heuristic methods that have
been used on many difficult optimization problems and
been found to produce ‘good’, near-optimal or sometimes
even optimal solutions. But, the effectiveness of the GAs
is normally assumed. Many researchers have used various
function groups to test and study the performance of GAs
[4,5]. They have focused mainly on tweaking the GA
control parameters and operators to enhance the
performance. In this paper, we use a problem which can
be made arbitrarily large but whose optimal solution is
theoretically known, to conduct experiments on the
effectiveniess of GAs, 1.e. the ability of the GA to reach an
optimal solution.

A simple GA was written in Visual C++ to solve this
problem. Its properties are as follows:

- Steady state GA.

- Population size is fixed at 100.

- Selection of individuals for each crossover is done
by randomly selecting 2 individuals from the parent
population.

a Number of crossovers performed is a direct factor of
the crossover rate of 0.2.

- Resulting child population allows for duplicates,

- Selection of individuals for mutation is done by
randomly selecting a single individual at each time.

- Mutation function is applied to the resulting child
population obtained after the process of crossover
during each generation run.

- No. of individuals selected for mutation is a direct
factor of the mutation rate of 0.1.

- Mutation occurs by randomly picking 2 alleles from
each individual and switching them.

IV. EXPERIMENTAL RESULTS

Using the GA described in the previous section, we
conducted a number of experiments to test the
effectiveness of the GA, i.e. its ability to find the optimal
assignment. We chose to experiment on a 2-out-of-m:G
system and as previously mentioned, the problem sizes
can be made as large as we liked. We partitioned the
problems into 3 sets:

Small problems with sizes starting from 10 subcomponents
to 100.

Medium problems with sizes starting from 110 to 200
subcomponents.

Large problems with sizes larger than 210 to 300
subcomponents.

Fifty cases of each problem size were randomly generated
and the GA was allowed to run wp to 50,000 generations
for small and medium problems while a 100,000
generations were set for large problems. Table 1 shows
the success rate (i.e. percentage of cases where optimality
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was reached) and the average number of generations
nceded to reach optimality for each of the problem sizes.

The GA performed very well and was able to achieve 100
percent success rate in all three probiem sets. Table |
shows the average number of generations needed to reach
optimality for each of the problem sizes. Chart 1 plots the
problem size against the average number of generations
required to reach optimality and it shows that the number
of generations is of order o{n”). We can deduced from here
that the GA was relatively fast in reaching the optimal
solution.

V. CONCLUSIONS

GAs, as have been mentioned before, provide a very good
heuristic method for a wide variety of optimization
problems but the quality of the GA solutions cannot be
ascertained very accurately except for small to medium
size problems. In this paper, we used a set of test problems
whose optimal solution is known and whose size can be
arbitrarily large to test the effectiveness of algorithm. The
experimental results suggested that GAs can be a robust
and fast heuristic method for solving large and complex
problems.

TABLE |
Success Rate and Average Number of Generations for Small, Medium and Large Problems

Small Medium Large
Problems Problems Problems
Problem Success Average Problem Success Average Problem Success Average
size Rate number of size Rate number of size Rate number of
% generations Yo generations % generations
10 100 90 110 100 8388 210 100 30544
20 100 459 120 100 9832 220 100 33772
30 100 924 130 100 11520 230 100 37492
40 100 1480 140 100 13539 240 100 41368
50 100 1998 150 100 15138 250 100 43582
60 100 2803 160 100 17446 260 100 47218
70 100 3736 170 100 19671 270 100 52296
80 100 4520 180 100 21981 280 100 57510
90 100 5693 190 100 24822 250 100 59177
100 100 7023 200 100 27902 300 100 61788
CHART 1
Problem Size Vs Average Number of Generations
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