Performance analysis of neural network based controller for nonlinear systems

Mirela TRUSCA
Automation Department
Technical University of Cluj-Napoca,
St. Daicoviciu, 15, Cluj-Napoca,
ROMANIA
Mirela. Trusca@aut.utcluj.ro

Abstract — The actual trend is io combine traditional
control methods with nenral networks in parallel. This paper
places the neural network inside the closed loop, in series with
the existing controller. With the neural network inside the
closed-loop, randomly initialized weights, unknown
performance levels, and mulliple reinitializations are more
difficult. A problem not so readily seen is that the weights
update rules for neural networks were not designed to work
in a feedback setting but in a feed-forward setting. The
derivation of update rules, particularly for back propagation,
were based on the independence of the weights and the input
to the nenral petwork. For a neural network in the closed-
Ioop, the assumption is no more valid; therefore, a new
update rule had to be derived.

L I. INTRODUCTION

The feed-through neural network is an excellent choice
when using neural networks in situations where the
nonlinear plant cannot be tested in the lab and the neural
network can only be converged once.

The adaptation of the weights of the neural network is
usually done with the standard back propagation algorithm.
The improved convergent algorithm is developed to take
advantage of a priori knowledge and the closed-loop
configuration, will be derived to replace back propagation.
Special consideration has to be given to the fact that one of
the nodes in the hidden layer is linear. Initially, it is desired
that the performance be acceptable, with no degradation in
performance during training. Tt is not desirable, nor
necessary, Lo step too far on each iteration. The learning
rate is to be set very small. When the learning rate is small,
there is a greater chance that the output error will converge
1o local minima of the weight space. This is the
engineering trade-off that therc first exists a willing to
make in order to guarantee initial performance.

The training of the neural network uses with white noise
at the reference input because white noise has a broad band
frequency content. A uniform random number generator
creates a random number at each iteration. This eliminates
the possibility that the neural network will memorize the
solution because there is no single training set on which to
perform multiple iterations. The neural network is never
seeing the same training data twice. If the neural network
is trained with a finite training set that is repeated, there is
a tisk that the neural network will memorize the training
set. Checking to see if the peural network is converging, it
is compared in fact the desired step response and the actual
step response.

The key to the method that will be implemented is the
weight initialization. The ‘feed through’ neural network is
initialized such that, on the first iteration, the current input,

Gheorghe LAZEA
Automation Department
Technical University of Cluj-Napoca,
St. Daicoviciu, 15, Cluj-Napoca,
ROMANIA
Gheorghe.Lazea®aut.uicluj.ro

u(k), to the neural network is the output. The feed-through
network is a fully-connected, feed-forward neural network
wilh a single path that is linear and that initially has
weights of 1.0. All weights from the inputs to the nodes of
the first hidden layer are initially zero, except the weight
going from the current input, u(k), to the linear node on the
hidden layer, which is initialized to 1.0, The other weights
past the first layer are initially random, except fof the
weight from the linear node on the hidden layer to the
output, which is also initialized to 1.0, as seen in Fig. 1. If
the neural network structure has more than one hidden
layer, then each hidden layer has a linear node and an
initial weight of 1.0, connecting it with the other adjacent
linear nodes.

The amount of time needed for convergence is
determined by several factors. The back propagation
algorithm, the learning rate, and the squashing function are
some of the factors that influence the rate of convergence,

Input Layer - 10 Inputs from Tap Delay Line

... Fully imnterconected
initialized to zeros except the
latest data

Initrahzed 10 1

Output unit

Initialized to 1

Linear output unit

Yik)

Fig. 1: Adaptive neural network filter structure.

II. THEORETICAL CONSIDERATION

The slate space controller and the plant are treated as a
single unit, and the neural network is wrapped around the
outside of the closed loop. This method has the advantage
that the weights for the neural network can be randomly
initialized because the neural network is not in the directly-
closed loop; it does not affect the initial stability of the
system. The disadvantage of this method is that the system
for which the neural network is trying to compensate is the
closed-loop dynamics of the open-loop plant due to the
dynamics of the estimator when the loop is closed through
the controller.

The initialization scheme was given the name “feed-
through neural network™ because the initial inpul values to
the neural network become the output value until the

113

neural network starts to converge. The closed-loop system
will initially have the exact same performance with the
neural network as without the neural network. The system
can then be put on-line, and the neural network can be
converged in the field without any initial loss of
performance due to the randomly initialized weights.

1L FEED-THROUGH NEURAL NETWORK
ALGORITHM

The developed algorithm is derived for minimizing the
squared error between the output of the neural network and
the ideal output of the neural network. The ideal output of
the neural network is calculated from the reference model
and the inverse model to the plant model, as seen in Fig. 2,

Terms used in Fig. 2 and throughout this work are listed
below.

x is the input into the system;

u is the output of the fixed gain controller;

17 is the output of the neural network;

W, is the weights of the hidden layer;

W is the weights of the output layer;

P is the discrete plant model;

C is the fixed gain controller;

P, is the discrete reference model;

M is the learning rate;

y is the output of the plant;

z is the output of the hidden layer;

fis the squashing function;

[is the derivative of the squashing function;

Y 18 the model output;

P, "y P’

1\\VN”‘\ p o

h 4

|o
@'

=
Yy

e prs Un
Y

Fig. 2: Block diagram of clode-loop control sysiem

U, is the input to the plant that would result in y
matching ym;

X is a vector of past values of x; and

Y is a vector of past values of y.

The output layer and one of the nodes on the hidden
layer have a linear squashing function. This allows the
feed-through neural network to be applied. The update
algorithm is broken into two parts. There is a different
algorithm for each layer, but the same error is minimized
for each layer. Equation 1 defines the error to be
minimized by this algorithm. The error is the difference
between the output of the neural network and the ideal
cutput of the neural network. The ideal output of the neural
network is calculated by using the output of the reference
model and the inverse of the plant medel. The plant is not
modeled exactly because the plant has nonlinearities that
are not modeled. However, this is the plant model used to
develop the fixed gain controller. Although the ideal output
of the neural network is not exact, the result is that a large

portion of the plant’s dynamics will be accounted for. If
the plant were modeled exactly, the neural network would
not be required. Several equations that define key
relationships can be seen in Equations 1 through 7.

&=y, -Ur (1)
uf=zW, 2)
z=f(W,U) (3)
u=Clx—y) @
Ym=PmnX &)
up=Plyn (6)
y=Pur)

The update algorithm for the output layer can be seen in
Equations 8 through 14. The partial derivative of the error
squared is taken with respect to the weights in the output
layer, as seen in Equation 8.

882 auf

®

Equation 9 is the partial derivative of the output of the
neural network to the weights of the output layer. Because
the output layer has a linear squashing function, the
derivative of the squashing function is unity.

ou 0

f Z
=z+W, —— 9
oW, e oW, L

Equation 10 is the partial derivative of the output of the
hidden layer with respect to the weights of the output layer.
For the hidden layer, the squashing function is not assurned
to be linear, The derivative of the squashing function is not
unity but f°.

0 _arwmu) = f'W, U (10)
W, aW, oW,

Equation 11 is the partial derivative of the input to the
neural network, which is the output of the fixed gain
controller with respect to the weights of the output layer.
This is where the new update algorithm noticeably
separates from the derivation of back propagation. In the
derivation of the back propagation algorithm, the partial
derivative of the input to the neural network with respect to
the weights is zero. The reason in the new update
algorithm has value for this partial derivative is because
the neural network is inside the closed-loop.

U e ac(x—y)= aCy - o dy b
oW, oWy oW, W,
Equation 12 is the assumed form for the plant.
)’(k):_biy(k—1)—b2Y(k“2)—... i)

w=bylk-1)+ agu(k)+aulk —1)+...

Equation 13 is the partial derivative carried through the
plant. A key assumption is made about the plant: the input
to the plant does not directly feed through; the term a, is

114

zero. With this assumption, the partial derivative of the
output of the plant with respect to the weights can be
calculated from values of the past iterations.

oylk) _ _, k1) , oylk-2)

aw, Loaw, *aw,
. auf(k)_’_a auf(k—l)
“ow, ' ow,

The update algorithm can be seen in Equation 14. The
weights for the cutput layer can be adjusted during each
iteration.

(13)

auf

14
W, (14)

W2 =W2 +2ue

This is the derivation for the update algorithm of
weights on the hidden layer.

The partial derivative of error squared with respect to
the weights of the hidden layer can be seen in Equation 15.

de’ G 4 (15)

Equation 16 is the partial derivative of the output of the
neural network with respect to the weights on the hidden
layer. Because the squashing function is linear for the
output layer, the derivative of the squashing function is
unity.

Buf az
— W =
ow, oW,

Equation 17 is the partial derivative of the output of the
hidden layer with respect to the weights on the hidden
layer. Because the squashing function is not linear for the
hidden layer, the derivative of the squashing function, 7, is
not unity.

(16)

2z Fwu) U
02 COHHIG W, 2 17
w, - aw |y, 0

Equation 18 is the partial derivative of the input to the
neural network, which is the output to the fixed gain
controller with respect to the weights of the hidden layer.

U -y} 3y . 3

= e 18)
aW; W, aW; aw (
Equation 19 is the assumed form of the plant,
k)==bylk-1)-byylk—2)—...
y(k) 1k =1)=bay() (19)

—byylk 1)+ agulk)+ ayulk —1)+...

Equation 20 is the partial derivative of the plant with
respect to the weights on the hidden layer. The feed-
through term on the plant’s input is assumed to be zero,
The value of the partial derivative of the plant can be
calculated using values of previous iterations.

8_»'(/{}7_!7 aylk —1) y(k-2)

aw, L ow, 2 aw,

i auf(k)+a u ¢ (ke ~1) 29
°aw, 1T aw,

The equation to update the weights of the hidden layer
can be seen in Equation 21.

W, =W, +2 Buf 21
=W +
1 1 ‘—’aw (21)

IV. SIMULATION RESULTS

In the simulation experiments, we use a fourth order
nonlinear plant model. The stable plant has two second-
order modes each lightly damped, with a damping
coefficient of approximately .05. The natural frequency of
the first filter in the series is 1 rad/sec; the natural
frequency of the second filter is twice the first, 2 rad/sec.
The saturation function inserted in between is a hyperbolic
langent function. For the unstable plant, the damping on
the second filter is made pegative. The estimator/regulator
control system was designed based on the linear model,
which was exactly nonlinear plant without the nonlinearity,
to give the closed-loop system a response with 0.707
damping. Due to the nonlinearity, the closed-loop system
does not perform as well as expected.

A nonlinear plant with saturation in the middle of the
dynamics will be considered (open-loop stable and open-
loop unstable). The structure of the open-loop process is
mentioned in Fig. 3. Generally for unstable plants with
neural network control, the plant is first stabilized with
feedback and the neural network is added outside of the
closed-loop. .

There is no guarantee that the resulting closed-loop
system will be stable. This is one of the reasons adaptive
inverse control is seldom used on an unstable plant. The
stable plant would converge when the learning rate is
decreased because the neural network adds a unknown
gain to the closed loop. The unstable plant is first
stabilized by the estimator/regulator so the neural network
can freely run at a higher learning rate. After
approximately 300,000 iterations, the neural network
converges to where there is marginal improvement in
performance. It is evident that given several
reinitializations, the neural network could converge to a
spot that will give better performance than the case without
a neural network, but that situation is not found during this
set of experiments.

Saturation in plant
/
1 - 1

Pdbastad [A [T Stmsrad [

Tanh

Fig. 3: Structure of the open-loop process

115

desired

step responce
o
=1 %

[=]
@

(=]
=

133

0 & i0 15 20 25
time (sec)

Fig. 4: Simylation of the step response of the stable plant (with (-)and
without neural network(--). desired {:))

[sX:14

[+X:13

04

0.2f

0 5 10 15 20 25
time (sec)

Fig. 5 Simulation of the step response of the unstable plant (with (-)and
without neural network(--), desired(:))

The developed algorithm reduces the amount of effects
due to the plant’s dynamics that can inhibit the
convergence of the newral network. By using a-priori
knowledge of the system, the algorithm converges the
weights of the neural network very quickly. For this
example, the weights converge within 4000 iterations. This
result is comparable to the back propagation results, which
took 300,000 iterations to converge. The improved
performance was achieved with a single convergence of
the neural network. The algorithm also reduces the mean
squared error of the closed-loop system from 3.27 x 10 2 to
3.27 x 10 4, a 99% reduction of mean squared error for the
step input. The results of the step input with and without
the neural network can be seen in Fig. 4 and Fig, 5.

V. CONCLUSIONS

The performance of a closed-loop control system can be
degraded by nonlinearities and an unexpected dynamics in
the plant, The technique developed in this research can
increase the performance of ill-modeled plants when a
fixed-gain, closed-loop control system already exists. The
feed-through neural network was devised to initially
maintain the performance of the closed-loop control
system. As the neural network converges, the performance
of the closed-locp system will be improved. Back
propagation was used to update the weights of the neural
network, This technique worked well but converged very
slowly. Back propagation was originally derived to work

on an open-loop system, and it does not use any a-priori
knowledge of the system.

The feed-through neural network is a neural network
with its weights initialized 10 have a unity gain. The linear
version of the feed-forward neural network is an FIR filter;
back propagation is analogous to the LMS update
algorithm for the FIR filter, which is also derived for the
open loop. There did not exist an update algorithm for the
FIR filter inside the closed-loop.

The amount of time required to converge is much less
than that of the back propagation algorithm. This result is
not surprising because the back propagation algorithm is
not designed to operate inside the closed-loop. Back
propagation is also not a model-based algorithm. If a pricri
knowledge of the system is available, the lwo new
algorithms capitalize on this information and reduce the
convergence time. The algorithms can be applied to a
practical example with a greater unknown nonlinearities
such as of a boiler plant that actually models the transport
delays of the system.

VI REFERENCES
[11 Bass, E. and K. Y. Lee, 1994, "System linearization
with guaranteed stability using norm-bounded neural
networks," IEEE International Conference on Neural
Networks, pp. 2355-2360.

{2] Chen, F. C. and C. H. Chang, 1994, "Practical
Stability Issues in CMAC Neural Network Control
Systems," Proceedings of the American Control
Conference, vol. 3, pp. 2945-2946.

[3] Choi, J. Y. and H. F. Van Landingham, 19935,
“Empirical Data Modeling and State Estimation for a
Steam Boiler System,” Proceedings of the 1995 IEEE

International Conference on Systems, Man and
Cybernetics, pp. 3943 — 3048.

[4] Joerding, W. H. and J. L. Meador, 1991, "Enceding A
Priori Information in Feed-Forward Networks,”
Neural Networks, Vol. 4, pp. 847-856.

{5] Narendra, K. S. and K. Parthasarathy, 1990,
"Identification and Control of Dynamical Systems
using Neural Networks," IEEE Transactions on
Neural Networks, Vol. 1, No. 1, pp. 4-27.

[6] Nguven, D. and B. Widrow, 1990, "Improving the
Learning Speed of 2-layer Neural Networks by
Choosing Initial Values of the Adaptive Weights,"
Proceedings of the [EEE International Joint
Conference on Neural Networks, Vol. 3, pp. 21-26.

[7]1 Renders, J. M., M. Sacrens, and H. Bersini, 1994,
"Adaptive neurocontrol of MIMO systems based on
stability theory," [EEE International Conference on
Neural Networks, pp. 2476-2481.

[8] Smith, B. R, 1997, “Neural Network Enhancement of
Closed-Loop Controllers for Ill-Modeled Systems
with Unknown Nonlinearities”, [EEE International
Conference on Neural Networks, Vol. 4, pp. 247-256.

[9] Tripathi, N., M. Tran, and H. Van Landingham, 1995,
“Knowledge-Based Adaptive Neural Control of Drum
Level in a Boiler System,” Proceedings of SPIE - The
International Society for Optical Engineering, pp 160
—171.

116

