Genetic Algorithm for Real-Time Scheduling
in Distributed Control Systems

Gheorghe Sebestyen
Technical University of Cluj
str. G. Baritiu nr. 26-28, Cluj,
Romania
gheorghe.sebestyen@cs.uteluj.ro

Abstract: Real-time scheduling in distributed control systems
is a necessary but also challenging task because of the
multitude of interconditioning relations and restrictions.
Classical exhaustive searching algorithms are prohibitive in
the terms of computation time. Therefore in this paper a
genetic approach is proposed. At first a transaction-based
computation model of a generic distributed control system is
built and then genetic operators are adapted to solve the real-
time scheduling problem. The proposed scheduling algorithm
optimizes the end-to-end worst-case response time for a set of
predefined control transactions.

1. INTRODUCTION

In most control applications the fulfillment of real-time
restrictions is critical for the correct behavior of the
controlled system. Real-time scheduling in a single
processor system is a well studied and documented theme;
there are a number of classical solutions of optimal
scheduling algorithms, such as the RM (Rate Monotonic)
[4] and its variations (e.g. priority ceiling, deferred server,
etc.), the EDF (Earliest Deadline First) [5], the SLF
(Smallest Laxity time First) and many others. But optimal
real-time scheduling in distributed systems and especially
in control systems is still an open problem. This is caused
by a sum of factors:

- there is no centralized control of what happens in the
distributed devices of the system

- there are a number of interconditioning and restrictive
relations (e.g. ordering relations, synchronization,
conflicts on concurrent access to common resources,
etc.), other than the real-time restrictions, which
makes the scheduling problem a NP (non-polynomial)
one

- the limited speed of message transmissions and the
significant distances between system's resources
generates relativistic effects: it is not possible to build
an accurate vision about the global state of the
distributed system and events happened in different
points of the system may be sensed in different order,
if they are observed from different points

- it is difficult to combine task scheduling at device
level with message scheduling on the network;
ordering relations between tasks and messages and
inherent delays caused by these relations increase the
complexity of the scheduling task

- in control devices extra restrictions may be caused by
their limited computing resources (e.g. an intelligent
transducer, based on a microcontroller has a very
limited memory space and computing speed)

- the great diversity of control devices involved in a
control system adds new restrictions, which are
difficult to express in a formalized way

Kalman Pusztai
Technical University of Clyj
str. G. Baritiu nr. 26-28, Cluj,

Romania
kalman.pusztai@cs.utcluj.ro

Zoltan Puklus
Szechenyi Istvan University
Gyodr, Egyetem tér 1
Hungary
puklus@sze. hu

A number of generic distributed control system models
were proposed as solutions for the real-time scheduling
problem. The MARS approach [3], proposed by Kopetz
and his team, is based on a pure time-driven solution, in
which control tasks and network messages are scheduled
off-line, based on their repetition period. The system
guarantees the fulfillment of all task and message
deadlines as long as the time characteristics don't change
during time. The model has pore support for aperiodic or
sporadic events. The Spring model 6], is an event-driven
approach; tasks and messages are scheduled on-line, as
they arrive, based on their deadlines. This model can
guarantee deadline fulfillment for a set of tasks and
messages with known time parameters and offers a better
chance for sporadic event' handling. Other models propose
hardware solutions to solve the communication delays and
distributed data consistency [6]. These solutions require
dedicated system architectures and networks. The
scheduling algorithms cannot be generalized for a wider
class of control systems,

ILA TRANSACTION-BASED GENERIC
DISTRIBUTED CONTROL SYSTEM

In order to simplify the scheduling problem in a
distributed control system a more formalized (abstract)
model is proposed. This model takes into account some
specific features of control applications. It is of common
knowledge that in a control application most tasks are
executed in a periodical fashion; the different control
functions imply periodic cycles containing data
acquisition, processing and control signal generation tasks.
These cycles have predefined periods and deadlines. There
may be also sporadic events (e.g. alarms) that must be
taken into consideration.

Most control functions can be modeled as a linear
sequence of steps (e.g. acquisition, processing, control
generation) avoiding non-deterministic wait cycles or
branches. Some sequences are exccuted periodically and
others are invoked on the occurrence of some sporadic
events.

In a distributed architecture network communication
and message delays must be taken into consideration. The
linear sequence of steps must include transmission times
for messages between tasks. The designer must evaluate
and guarantee the worst case end-to-end response
(reaction) time for the time-critical control sequences.

According to these considerations a transaction-based
distributed model was built. A transaction is a linear
sequence of tasks and messages that implement a given
control function. The whole control application is built as a
set of transactions. Some transactions are activated
periodically based on their predefined time periods; others

Ll

are activated by specific events (e.g. alarms from the
controlled system or user requests). Tasks contained in a
transaction are distobuted in automation devices,
connected on an industrial network. The "industrial” term
suggests a deterministic network protocel, in which there is
an explicit way of controlling time restrictions.

Tasks are scheduled locally on every device using an
EDF (Earliest Deadline First) algorithm. Preference for
this algorithm is based on two aspects: this algorithm
equally accepts periodic and sporadic tasks and it offers a
better scheduling chance for a given processor load [7]. A
similar algorithm is used to order message transmissions.
When a given device gets access to the network, it will
select from its queue the message with the smallest
deadline. During a network cycle a time-slot is reserved for
every device connected on the network, when the specific
device may initiate data transfers.

The goal of the proposed model is to guarantee end-to-
end time restrictions for all the periodic and sporadic
control functions contained in a distributed application.
The methodology proposed in the next paragraphs, which
tries to solve this goal, has two parts:

- an analytical part that evaluates the end-to-end
response times of transactions and compares them
with their deadlines and

- a reconfiguration part that uses a genetic algorithm to
redefine intermediate deadlines in order to obtain a
better chance for a feasible scheduling solution

HNLEVALUATION OF WORST-CASE END-TO-END
RESPONSE TIME

Evaluation of the worst-case response time is a
necessary step in the process of demonstrating the
feasibility of a real-time scheduling strategy for a
particular system configuration. A designer proves the
correctness of its system, from a real-time point of view,
by comparing the worst-case response times of all critical
control functions (tasks) with their deadlines. If some of
the deadlines are not met than the scheduling policy must
be changed or the system's components have to be
reconfigured (e.g. relax some time restrictions or eliminate
some, less critical, functions). A fine tuning approach may
be appropriate.

A number of analytical evaluation methods were
proposed [4,5,7,9] for different scheduling algorithms,
working in a single or multiple processor environment. The
most interesting solutions are those described by Tindell et
al. [8] for a RM (Rate Monotonic) scheduling algorithm
and by Spuri [S] for the EDF (Earliest Deadline First)
algorithm. In both cases a "holistic” approach was adopted,
which means that the global or end-to-end response time
for a sequence of linear tasks and messages was evaluated.
The link between the task scheduling and message
scheduling processes is made through the concept of
"arrival jitter". A task, which sends a message, is causing
an arrival jitter (a non-predictable delay) to that message
equal with its worst-case execution time. This jitter
influences the worst-case delivery time of the message. In
a similar way the destination task's arrival jitter is
determined by the receiving messages delivery time. An
iterative method must be used to cvaluate the response
iimes and the delivery times of all tasks and messages

118

involved in the application. A transaction's response time
is given by the response time of the last task in the
transaction. '

In accordance with the proposed transaction-based
computation model, in our approach, the evaluation
method proposed by Spuri was adopted. Next, the most
important steps of this method are reproduced (a more
detailed description can be found in [5]). The method is
based on the following theorem, which is a consequence of
the well known Liu and Layland's theorem on EDF
scheduling:

"The worst-case response time of a task i (for the EDF
algorithm) is found in a busy period (a period with no idle
intervals) in which all other tasks are released at the
beginning of the period and then at their maximum rate.”
(the proofis found in [5]).

For a task i arrived at moment "a" (a is inside of the
busy period) the length L(ai) of the busy period is
computed with the following iterative method:

L@ = j#an%ngjDi (0
L(@,me = Woi(La,i)w) +(1+L@HYT NG (2)

where: Cj - computation time for task j
Dj - the relative deadline for task j
Ti - period of task 1
Ji - release jitter of task i
L(a,1)n, - the busy period's length after m iterations
W, (t) - the cumulative workload generated until
moment t by the higher priority tasks (tasks with
Dj <a+ D; +4J jj
(1+ [_(a+Ji)/Ti)C; - the workload generated by
previous releases of task i
The higher priority workload W,;(t) can be computed
as the sum of all computation times of tasks' instances
arrived before time t and which have a higher priority than
task 1 released at moment a. A task j has a higher priority
than task i if Dj<a+D;+ J;.

Wai(ty= £ min{[(
]

+IVT DT VTS :
#andDj<a+Di+th }J)/TJ_I ’(H{(a D 1+JJ DJ)’,TJ-(|)3})CJ

In the previous expression the first term (|’ I
gives the maximum number of arrivals of task j until the
moment t and the second term (1+ |_(a+Di+Jj—Dj)/Tj_|)
gives the maximum number of task j instances that may
have a higher priority than task i. The release jitter Jj of
task j increases the number of possible releases of task j
instances in a given period of time (t or a). This effect was
demonstrated in [8].

The previous iterative computation ends when Ly, =
L. The convergence of the computation is assured as long
as the processor's overall utilization factor for the given
task set is smaller or equal with 1 [5].

3 CifTi <1 (4)

iz

Based on the busy period's length, the worst-case
response time of task i for a release moment "a" can be
evaluated with the expression:

1, = max {J;+ C;, L(a,i) - a}

)

The overall worst-case response time r; for a task i is
the maximum between all the worst-case response times Tia
computed for different "a" moments. The significant values
of "a" are in the interval [-Ji, L-Ci - Ji], where L is the
maximum busy period length of all tasks.

L= max {T,} (6)

ae[-di, L Ci-Ji]

In this way, in every device connected on the network,
the worst-case response times for all tasks can be
evaluated, as long as the relative deadline D;, the period T;
and the release jitter J; of every task are known. In a
similar way [5] the worst-case delivery time of all
messages generated by a device on the network can be
evaluated.

But in a distributed system the release jitter of a
destination task depends on the worst-case delivery time of
the receiving message and vice-versa, the release jitter of a
message depends on the response time of the sender task.
This problem is solved with an iterative method in which
the response times, delivery times and release jitters are
computed based on the values generated in a previous step.
In the first step the release jitter times are set to their
minimum value, which is the sum of the execution and
transmission times of all tasks and messages that precede
the analyzed item (message or task). The next equation
sets shows the iterative computation steps.

Ry ety = Renr(Tiimy) 0
Ry ety = Repe(Jogmy)
Rn (m+ly = 9{EDF(Jn(m))

net{m+1) = g{nctEDP(Jnel(m)) and

Jimen = 821 Reeqons 1)
D1y = 822 Reetgms1y)

Fomtn) = 20 Reex(me1))
et 1y = §2nat(Rigme), Rogm 1y, Rogue1y)

where:

- Rigm) - the response time vector for all tasks
contained in device "1" after ,,m” iterations

= Ryeymy - the delivery time vector for all
messages sent on the network after ,m”
iterations

- Jiem) - release jitter vector of all tasks in device
"i" after "m" iterations

- Jretem - release jitter vector of all messages after
"m" iterations

- Repr, Ruwepr - the expressions of the release
time and delivery time

- §2i na— the expression of the release jitter

The iterative process stops when the computed values
in two consecutive steps are the same or if a given deadline
is not reached.

The other problem concerning the presented method is
that in most cases the relative deadlines of individual tasks
and messages composing different control sequences
(transactions) are not specified; only the end-to-end
deadlines of control sequences can be derived from the
controlled system's requirements. So the designer has the
difficult task of specifying the relative deadlines, based on

empiric considerations. These deadlines significantly
influence the chances of finding a feasible scheduling
solution. A relative deadline for a given item (message or
task) is influencing not only the worst-case response time
of the transaction in which is included but also the
schedulability of other transactions. The implications are
complex and therefore an analytical approach is not
feasible. For this reason a genetic approach is proposed.

IV.GENETIC ALGORITHM FOR THE
SCHEDULING PROBLEM

The goal of the bellow genetic algorithm is to generate
a set of relative deadlines for tasks and messages,
contained in distributed transactions, which assures the
success of an EDF scheduling strategy.

Solving a given problem with a genetic algorithm
implies two important steps: one is the proper selection of
the coding scheme and the other is the adaptation of
genetic operators to the specific characteristics of the
problem.

In the case of the proposed distributed system model,
relative deadlines must be coded in chromosomes. A
chromosome contains a number of segments (genes) equal
with the number of transactions specified in the system. A
segment is a lincar sequence of numbers that determine the
relative deadlines of tasks and messages contajned in a
transaction. A successful chromosome is an individual that
contains a set of deadlines, which assures the fulfillment of
end-to-end deadlines for all the existing transactions. Fig. 1
shows a coding example for a system with 4 transactions.

The initial population of chromosomes is generated
with a guided algorithm, instead of a pure random one. In
many cases a well-generated initial population increases
the probability of finding an acceptable result, or reduces
the search time. So a relative deadline for item i (task, or
message) must be selected from the interval:

Die[C, Dy - X G
jetrk) and j7

(®)

where: Di - the relativ deadline of item 1
tr(k) - transaction k, to which item i is part of
D) - the end-to-end deadline of transaction k
C; - the computation time of task i or
transmission time of message i
A very small relative deadline, close to the
computation or delivery time, reduces the probability of
finding a feasible schedule for that item. A bigger deadline
reduces the other items' chances of being scheduled.
Therefore a fair laxity time algorithm is proposed;
according to this algorithm the relative deadline of an item
is selected randomly around a value, which is obtained as a
sum between its computation/delivery time and an average
waiting time (called laxity time). The average waiting time

task deadlines message deadlines

23514621431 571434

[N | W N S W —
seg. 1 seg. 2 seg. 3 seg. 4

Figure | Chromoscome coding example

119

is computed per transaction and is obtained by dividing the
spare time in a transaction with the number of its items. So
in the initial population a relative deadline is randomly
generated around the value:

Ci+(Dygy- £ C)/m(k) &)
jetr(k)
where: m(k) is the nomber of items in transaction k

A fitness function (F(I)) quantifies the scheduling
chances for a given deadline set (chromosome). This
function takes into account the relative difference between
the end-to-end deadline and the worst-case response time
of every transaction. A penalty coefficient is used to
reduce the survival chances of an individual for which one
or more deadlines are not met. The fitness function has the
following expression:

N
fih= gl(Dtr(k)' T g)/DHr(K) * pugy (10
where: p tr(k) is the penalty coefficient of transaction
k and is computed as follows
1 if (D[r(k) =L rr(k)) 20 ;no penafty (l 1)
ptr(k) =
penalty if (D=7 iqg) <0

The fitness function is used to determine the limited
group of individuals that survive unchanged from one
generation to the other (based on an elitist strategy), the
group that is combined with the crossover operator and
also the individuals that are climinated.

The crossover operator combines segments from two
chromosomes to obtain two new individuals. The cross-
point is always between two consecutive segments. The
experiments were made with one and two cross-points.

The mutation operator is adapted to the specific
features of the scheduling problem. The following two
rules are used:

- for a segment (gene) corresponding to a transaction
that does not fulfill its deadline condition a random
item's relative deadline is increased; the new deadline
must be in the interval specified at the beginning of
this paragraph

- for a segment comresponding to a transaction that
fulfill its deadline condition a random item's relative
deadline is reduced

The process is performed until a chromosome fulfills
all the deadlines, or it may continue until a more reliable
solution is found. A solution is considered more reliable if
there are greater distances between deadlines and worst-
case response times for all transactions, The explanation is
that in case of an error more time remains for recovery
procedures, The most reliable individual is selected from
chromosomes that fulfill all the deadline conditions and
which maximizes a performance function P(I).

P(D)= min { Dugy - iy } (12)

forallk

The experiments were made on a hypothetical control
system with a variable number of devices (5 to 10)
connected on a network and a variable number of
transactions (10 to 30). The transactions had a limited

number of tasks and messages (3 to 5) in accordance with
real case situations. The tasks were randomly allocated to
devices, but preserving the condition that for any device
the processor utilization factor was smaller than 100%.

The tests showed that in most cases the proposed
method generates a final population in which a number of
solutions are acceptable from the schedulability point of
view. For those cases when no acceptable solution had
been generated in a reasonable computation time, probably
there was no such solution for that configuration.
Unfortunately there was no other available method to
analyze the schedulability of the given configuration.

V. CONCLUSIONS

This paper presents a solution for the real-time
scheduling problem in a distributed control system. At first
a transaction-based computational model is proposed in
which control functions are implemented as linear
sequences of tasks and messages. Then an analytical
method is given to evaluate the worst-case response time in
the case of an EDF scheduling strategy. The evaluation
method requires deadlines for the internal items of
transactions. These deadlines are determined through a
genetic algorithm. The genetic approach reduces the
complexity of the search process.

VLACKNOWLEDGEMENTS

The work was possible due to the support given by the
Joint Hungarian -- Romanian Intergovernmental S & T Co-
operation Program under grant 13/2002 and contract No.
18051/2003 (code RO-9/2002 and HU-17/2002).

VII. REFERENCES

[1] T.F. Abdelzaher, K.G. Shin, "Optimal combined task
and message scheduling in distributed real-time
systems", in Proceedings of the IEEE Real-Time
Systems Symposium, 1995

[2] C.Gonzalez and R. Waiwright, "Dynamic Scheduling
of Computer Tasks Using Genetic Algorithms”, Proc.
of the first Intl. Conference on Evolutionary
Computation, 1994

{31 H. Kopetz, "Distributed fault-tolerant real-time
system. The March approach”", [EEE Micro, 9(1),
Jfebruary,1989

[4] C.I Liuand J.W. Layland, "Scheduling algorithms for
multiprogramming in a hard real-time environment",
Journal of ACM 20(1), 1973

[5]1 M. Spuri, "Analysis of deadline Scheduling Real-Time
Systems", INRIA, Research report Nr. 2772, 1996

[6] J. Stankovic, K. Ramamritham, - The Spring Kemel:
A New Paradigm for Real-Time Systems, - IEEE
Software, vol. 8, no. 3, pp62-67, 1991

[71 J. Stankovic, M. Spuri, K. Ramamritham and G.
Buttazzo, "Deadline Scheduling For Real-Time
Systems: EDF and Related Algorithms", Kluwer
Academic Publishers, Boston, 1998

[8] K. Tindell J. Clark, "Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems”,
Microprocessors — and — Microprogramming, no.

