Agent-Based Web Search Using Evolutionary Strategies

Ioan Alfred Letia
Department of Computer Science
Technical University of Cluj-Napoca
Baritiu 28, RO-400027 Cluj-Napoca
Romania
letia@cs.utcluj.ro

Abstract — The query results returned by the classical search
engines are not always relevant for a user who wants to find a
specific concept. In order to overcome this, we suggest an
interactive approach of the process of posing queries. We
have developed a multi-agent system which uses evolutionary
strategies in order to improve the queries, according to the
user's feedback. The system builds a query profile describing
his preferences from the point of view of the concept he or she
actually expects to find; this profile is used to improve the
query accuracy. Then, the profile is updated to reflect the
users preferences, allowing him or her to focus on relevant
links, The results we have obtained proved to be encouraging
from the perspective of the concept-based semantic search.

L INTRODUCTION

The explosive development of the World Wide Web
offered the user the possibility to access virtually any
information resource they might need. However, in order
to access the information he or she actually needs, a certain
user has to browse a huge number of web sites; among
them, only a tiny fraction might be of real help for the
topic he or she is interested in. The search engines which
have been developed, and among them Google, Yahoo or
Altavista, aim to solve this problem by indexing the web
pages and providing the user with a set of links which
might be of interest, based on a query issued by him or
her. However, their performance is not 100% satisfactory
due to some inherent limitations of the search strategies
they employ.

First, the vast majority of today's search engines are
based on the vector-space model described in [8]. The
methods in this class regard a document as a vector of
words and assess the similarity between documents as the
dot product of the corresponding word vectors. This is a
syntax-oriented approach rather than a concept-driven one;
thus, it does not prove effective for revealing semantically
similar documents, forcing the user to browse many
irrelevant web sites.

Then, query-oriented surveys [3,9] showed that many
users usually issue queries consisting of a small number of
words. This makes the search engines retrieve many
irrelevant documents which contain the submitted
keywords, whilst missing some relevant documents which
do nol contain them.

Finally, the order in which the query results are ranked
has a high impact on the scarch effectiveness as it may
save an important amount of time if the proper results get
higher ranks and are presented among the top links in the
answer list. However, this target is difficult to achieve
based solely on the web page structure. For instance, the
Page Rank algorithm [6], a version of which is reportedly

121

Stefan Mathe
Department of Computer Science
Technical University of Cluj-Napoca
Baritiu 28, RO-400027 Cluj-Napoca
Romania
mathestefan @freemail.utchyj.ro

Radu Razvan Slavescu
Department of Computer Science
Technical University of Cluj-Napoca
Baritiu 28, RO-400027 Cluj-Napoca
Romania
srazvan@cs-gw.utcluj.ro

used by Google, computes the ranking of a page based on
the links pointing to it. Because of this approach, again
many irrelevant documents might get higher ranks,
therefore increasing the time needed until the user gets the
page he or she actually was after.

One of the solutions suggested for coping with these
drawbacks is to build a system based on an interactive
approach. The user offers a feedback to the system, by
evaluating the query results according to his or her actual
needs. This feedback comprises the user's preferences
concerning the already provided results of the search;
based on this feedback, the system will build a query
profile which will guide the further scarch process
accordingly. By combining the document space
exploration with the query profile exploitation, the quality
of the subsequent queries becomes higher than that of the
original one. We can say the system tries to capture the
concept the user had in mind when assessing the query
relevance rather than guiding the search based solely on
keywords' syntactical similarities.

This paper presents the multi-agent system we have built
pursuing this approach. It follows the ideas presented in
[4], with a set of improvements we will emphasize later.
The system consists of four agents: the discovery agent,
which poses queries to a scarch engine, namely Google;
the information agent, which builds the query profile,
based on evolutionary strategies; the filtering agent, which
re-orders the query results according to the information in
the query profile; the interface agent, which does the
interaction with the user. The system still makes use of an
existing search engine, i.e. Google, to answer the queries;
however, it keeps on refining the issued queries till the
actually needed results are found.

This refining process relies on the query profiles the
system builds and maintains. A query profile is the list of
the most frequent stems in the page already indicated by
the user as being of interest. After a new page is stemmed
and analyzed, the corresponding query profile is updated
accordingly.

The rest of this paper is organized in the following
manner. Section II gives a brief description of the
evolutionary strategies and how they could be applied to
the problem of web search. In Section 1I1, we describe the
multi-agent system in detail and explain how it is used for
query refining and profile updating. Section 1V presents
the query results, together with the average fitness of
individuals in the population; this is done for a couple of
query refining iterations. Section V concludes and sketches
the possible improvements of the system.

II. EVOLUTIONARY ALGORITHMS IN WEB
SEARCH

Evolutionary algorithms try to use the idea of natural
selection in guiding the search for a solution to a given
problem [5]. Their general mechanism consists of a set of
iterations executed over the whole set of individuals, called
population. One individual represents a point in the space
of all possible solutions of the problem. One iteration
comprises the steps of selection, crossover and mutation.
Selection means probabilistically choosing a set of
individuals in the population to be replaced. The survival
chance of given individual depends on how fit that
individual is for the problem intended to be solved; a
fitness function should be provided in order to asses the
distance between the current individual and the ideal
solution. Crossover means combining segments obtained
from two individuals in order to obtain two new ones,
while mutation is slightly altering one individual in order
get a new one. The whole process is repeated till an
acceptable solution is found or a given number of iterations
is reached.

The Evolutionary Strategies (ES) approach [1] follows
the same idea, but gives a higher importance to the
mutation operator. An individual is seen as a fixed-length
string, whose components are real values which have to be
optimized. Mutation is the most important operator for
creating the new generation and consists of adding
normally distributed random numbers to all components of
an individual in the same time. Each individual has
assigned a standard deviation o, called the step size, which
is inherited from its parents and then modified by the
logarithm of the normal random numbers. If p is the
number of individuals in the population and A is the
number of generated offspring individuals, then, for the
next generation, p individuals among the total number of p
+ A will be selected.

The ES approach is preferred if some dependencies
among the components exist, due to their higher speed
compared to the genetic algorithms. Because word
frequencies are not mutually independent in case of
document search, we picked up the ES for the problem we
addressed. To be more specific, the implementation uses
the algorithm described in [4]. Each individual consists of
a word frequency vector (fy.f;...,£,,6,,05...,6,) where f; (1 <
< n) are frequencies corresponding to the words in the
query profile (all individuals are derived from the query
profile by varying word frequencies) and o; are the
corresponding standard deviations.

The process of mutating an individual is done in the
following manner:

*

(Z.
f; =f;+oN,QD

— TN, D+, (O1)
=0.e (1)

(2)

where:

N(0,1) is a normally distributed random having mean 0
and variance 1

N(0.1) is a normally distributed random number for
component i, with mean 0 and variance 1

Tz/zx/ﬁ

= Vi

The evolutionary strategy takes place as follows:
1. Generate the initial population of p individuals

2. Generate X off-springs by applying the
formulas above

3. Evaluate each offspring

4. Select the best p fittest individuals from the
original population together with the off-
springs

5. Continue the process above a given number of
times or until a timeout signal is received

6. Select the fittest individual from the final

population and supply the resulting 1 words
having the highest frequency to the user as the
final query.

II. SYSTEM ARCHITECTURE

The multi-agent system we have developed is written in
Java and makes use of Google as the primary search
engine. This section describes the system components and
roles and explains how the queries are successively
modified, using ES, in order to obtain semantically
significant search results.

The system comprises four types of agents:

1. Discovery Agent, which routes the queries to
the search engine;

2. Information Agent, which updates the query
profile and improve the queries based on this

3. Filtering Agent, which re-ranks the resulting
links :

4. Interface Agent, which does the communication

with the user.

From a functional perspective, the search consists of two
steps. In step one, the user formulates a query, which will
eventually get answered by the search engine; the user will
be presented a set of links which are supposed to be
relevant for him or her. Step two starts when the user
requires a query improvement. In this step, a set of new
queries is sent to the search engine; the key terms of these
new queries are built using the query profile in order to
narrow down the bunch of links to the interesting ones.

To be more specific: in step one, the query issued by the
user is taken by the Interface Agent and sent to the
Discovery Agent. This latter agent sends the query further
to a classical search engine. Right now, the search engine
used by the system is Google. The answer of the search
engine is sent to the Discovery Agent. The Discovery
Agent then routes it to the Filtering Agent for re-ranking
and then the result is displayed. The entire flow involved in
step one is summarized in Fig, 1.

Fig. 1. Normal query

When the user chooses to improve the search quality, a
different flow is employed. Based on the query profile, the
Information Agent generates new queries and sends them
to the Discovery Agent for the dialog with the search
engine as above. In this case, the results are not filtered any
more by the Filtering Agent.

The flow corresponding to this sccond step of the
process is presented in Fig. 2.

In the rest of this section, we will describe each agent's
functionality in more detail.

A. The Discovery Agent

The task of the discovery agent is to perform queries on
the internet at the request of the interface or of the
information agent. A classical search engine is used to
perform these queries. Our implementation uses the free
Google API java library, which is provided by Google for
application developers. For performance reasons, query
results are cached, in order to avoid repeated queries for
the same keywords. Due to the dynamism of web, cache
results are assigned an expiration period, beyond which the
cache entry is considered stale.

B. The Information Agent
The information agent is the most complex agent in the
system. The information agent plays two important roles in

the system:

e Build and update the query profile
e Improve queries

Fig. 2. linproved query

BI. Managing the query profile

The primary purpose of the information agent is 1o
maintain a query profile which describes the pages that
have been selected by the user so far.

The process of building the query profiles begins with
an analysis of the URLs selected by the user. The analysis
of a page consists of several steps:

1. Parse the page using an HTML stemmer,
ignoring format and control information
(HTML tags, scripts, etc.) and transforming
each word into its stem. The process of
extracting the stem from each word is achieved
by using the Porter algorithm. A description of
this algorithm, and a free implementation of it
are available at [2]. Each word is counted,
together with its stem.

2. Parse the list of word-stem pairs, by merging
those pairs having the same stem and by
keeping the most frequent form of the word that
generated that stem.

3. Sort the list of stems in descending order and
keep the top k most frequent stems.

Thus, at the end of this process, each page is
transformed into a list of stems, each tagged with its
number of occurrences in the page. The total word count of
the page is also kept. Hence the [requency of each word is
known, but, unlike in the approach in {4] we have decided
to also keep the total word count of the page, which will
prove useful when updating the query profile.

Once a page has been analyzed, the results of the
analysis are stored in a cache, in order to avoid further
useless computations.

The query profile is the list of the top 'm' most frequent
word stems in the pages selected by the user so far. After a
page is analyzed, the query profile is updated with the
results of the analysis. The following formula is used for
cach word stem appearing in the profile, the analyzed
pages or both:

_ f profiie Counrproﬁle + f page coun rpage

f new
profite + Countpage

3
count

and the word count of the profile has to be maintained
also in order to be able to infer the frequency of each stem;

count,,, =count . ., +count, ., (4

where:

Jorofte 15 the number of occurrences of the word stem in
the profile

Joage 18 the number of occurrences of the word stem in
the selected page

COUNL, . 15 the total number of words in the profile

€0UNt . is the total number of words in the page

Jrew 18 the number of occurrences of the word in the new
profile

count,,,. is the number of word encounters in the profile

When applying the above formulas in case a word does
not appear in the page or profile, we assume a 0
corresponding occurrence count.

After applying this process, the stems are reordered
based on their new [reguencies and the top 'm' most

frequent stems are retained. Therefore, one can say that the
profile of the query is actually an efficient approximation
of the result that would be obtained by analyzing the
concatenation ot all the HTML pages selected so far. The
word counts of Lhe pages play the roles of weighting
coefficients in (3). By doing this, the impact of a very
frequent word in a page containing very few words is
reduced compared to the impact of having a high
frequency word in a large page. Thus longer pages will
have higher influence on the query profile than shorter
ones.

B2. Improving queries

Once a query profile has been built from the pages
selected by the user, the information agent will try to
improve the query. This is done by an evolutionary
strategy described in Section II.

The fitness computation is done in the following
manner:

1. Choose 1 words with highest frequency from
the individual

2. Submit a query containing these words to the
search engine. If the number of results returned
is below a given threshold, relax the query by
dropping the least frequent word from it and re-
submit the query. Repeat this process until the
number of results is above the threshold.

3. Analyze each result of the query.

4. For each result, compute a similarity value by
making the cosine product between its word
frequency vector and the original query profile.

5. Compute the fitness of the offspring by being
the a weighted mean of the similarities obtained
in the previous step. Here, we take a slightly
different approach from that presented in {4]. If
a result has already been selected, it will be
assigned a smaller weight than a result which
has not been selected yet. In this way we
promote individuals that give many new
relevant pages, rather than individuals giving
selected pages over and over again. The final
formula to be used is:

fitness = = (5)

C. The Filtering Agent

The purpose of the filtering agent is to re-rank the pages
based on their cosine similarity to the query profile, such
that the user is presented with the pages most relevant to
the query. The reason for this is that, once a query profile
is building up, a discrepancy will come about between the
ranking done by the classical search engine based on the
similarity to the keywords and the one done by the filtering
agent based on the similarity to the appropriate query
profile.

Fig. 3. The Interface Agent

D. The Interface Agent

The interface agent is responsible for all interactions
with the user. By entering a query and clicking the Go!
button, the user can submit his query in exactly the same
way it would use a normal search engine. In this case, the
interface agent will submit the query to the discovery
agent, which in tum will pass it to the search engine. The
results are then passed to the filtering agent for re-ranking.

A snapshot of the interface agent is presented in Fig, 3.

The user can browse each page by clicking on each
hyper-link, very much like when using a classical search
engine. If a page is considered to be relevant to his or her
interests (i.e. it is related to the concept of his or her
search), the user can select the page by checking the
corresponding checkbox. :

By clicking the Improve button, the user can ask the
system for an improved query based on the pages he or she
has selected as relevant. As a result, the interface agent
will ask the information agent to update the query profile
based on the pages that have been selected. It will then try
to improve the query and return the final results to the user.

The user interface also provides the user with the
possibility to save the current query profile to disk for
later use. What he or she actually does is that he is saving
information regarding the concept of his or her search such
that, at a later time, the same concept can be loaded and
nsed to search for newly available pages. In this way, after
a couple of initial iterations aimed to "train” the system,
the user can, at any time and by a single mouse click,
query the web for news regarding the concept he or she is
searching for.

IV. EXPERIMENTAL RESULTS

The system has been tested for more queries. In order to
illustrate its capabilities, we will show the results we got
when we searched for the concept "Beagle" - the European
probe lost on Mars. Because of the semantic ambiguity of
this word, many other links, not connected to Mars
exploration, are discovered; c.g. Darwin's "Voyage of the
beagle"” or different sites concerned with breeding beagles

124

(i.e. birds). In order to test the query improvement
capability of the system, we performed a two-step process
as described earlier in this paper.

Fig. 3 presents the interface agent displaying the query
results obtained after step one, which means no query
refinement has been drawn yet. As we can see, only the
first and the last link are actually related to the topic of
Mars exploration which we were interested in from the
very beginning.

Then we selected the links we considered of interest for
us by checking the corresponding checkboxes next to them
(see Fig. 3) and asked the system to improve the query.
The result was that, after this query improvement, all query
resulls are relevant for the area the user has focused on.
The results displayed by the interface agent in this latter
case are depicted in Fig. 4,

[t can easily be noticed that each of the displayed links is
concerned with the Mars exploring robot, while the
previous imrelevant links are avoided altogether. The
conclusion is the query has been significantly refined and
could offer the user a much higher accuracy when guiding
his or her search on a specific field.

The convergence of the evolutionary strategy, in terms
of the average fitness value per generation versus the
number of generations is presented in Fig. 5. The results
have been obtained for 8 generations, using a population of
64 individuals, 64 off-springs and an initial step size of 0.5.

As one can easily sce, the average fitness value
increases from generation to generation. The same
ascending trend has been obtained for different values of
step size, number of individuals and/or number of off-
springs, but the curve slope was different with each
experiment. However, the higher the values of these three
parameters, the longer the time needed for refining the
query; therefore, a trade-off between the search accuracy
and the responding time has to be achieved. Acceptable
values for time and accuracy have been obtained for a step
size of 0.03, a population of 16 individuals and an
offspring of 16 individuals as well.

Fig. 4. Second try: all links are relevant

Raurugs <Feoring Fnsam
ez ag)

Gresmiey

Fig. 5. Algorithm Convergence
V. CONCLUSIONS AND FUTURE WORK

The results we obtained show the ES approach of the
web search could offer a significant improvement of the
search accuracy when the user is focused on a specific
concept. The suggested refinement offers the possibility to
get relevant results even if the semantic concept is not
specified in an explicit manner or the query term is
ambiguous.

In order to prove this idea, we have built a multi-agent
system which implements an improved version of the
evolutionary strategies for web search and tested it on a set
of queries, with good results. The convergence of the
evolutionary process ensures a reasonable response time
for the whole process, without sacrificing the search
accuracy. :

Investigations on evolving multi-agent systems [7] have
alrcady shown possible improvement in their overall
behavior. Given the huge task such agents have to face, the
decomposition of tasks and coordination among agents,
specialized in various sub-areas, should further improve
performance.

VI ACKNOWLEDGEMENT

The work for this article has been supported in part by
the National University Research Council in Romania,
within the framework of the research project number 528 /
2002.

VII. REFERENCES

[11 T. Back. Evolutionary Algorithms in Theory and
Practice, Oxford University Press, NY: 1996,

[2] http:/fwww.tartarus.org/martin/PorterStemmer.

[3] B. Jansen, A. Spink, J. Baterman and J. Saracevic,
"Real Life Information Retrieval: a study of user
queries on the web” SIGIR Forum vol. 32(1), 1998,
pp. 5-17.

125

[4] W.-P. Lee and T.-C. Tsai, "An Interactive Agent- [77 M. A. Qureshi. "The evolution of Agents,” PhD

Based System for Concept-Based Web Search” Thesis, department of Computer Science, University
Expert Systems and Applications vol, 401, 2003, pp. of London, UK, 2001.
365-373. [8] G. Salton. Automatic Text Processing Reading, MA:
[5]1 T. Mitchell. Machine Learning, McGraw Hill: 1997. 1989.
[6] L. Page and S. Brin , "The anatomy of a large scale [9] C. Silverstein, M. Heizinger, M. Hannes and M.
hypertextual Search Engine," in Proceedings of the 7 Moricz. "Analysis of a Very Large Web Secarch
International World Wide Web Conference, 1998. Engine Log" SIGIR Forum vol. 33(3), 1999, pp. 6-22,

126

