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Fig. 1. The 4 d.o.f. PKM used as a testbed for the control

Abstract — In the last few years, the wide availability of
computing power and operating systems with real-time
capabilitics offered the chance to develop low-cost PC-based
solutions for motion control; this made possible to overcome
limits in commercial robot controllers for their use in a
research conteat. Moreover, modern scripting languages are
becoming more and more powerful. High-level programming
permits to easy write code in a smart way and does not
require particular skills. In this paper we present the design
of a modular architecture for PC-Based robot control under
the QNX Real Time operating system. The proposed
architecture allowed to use the Python programming
language as an high-level object oriented scripting tool to
program robot motions and to monitor, even remotely, the
system. The designed architecture has been employed for the
motion control of a 4 d.o.f. reconfigurable parallel robot, and
the advantages deriving from the use of 2 high-level object-
oriented robot programming language are shown through the
programming of a demonstrative assembling cell of a
manufacturing plant.

. INTRODUCTION

Nowadays industrial companies have to face frequent
and unpredictable market changes. So, to remain
competitive, companies must possess a new type of
production system and intelligent machines able to react to
such changes.

A limit for a broader employment of robots in this
context is represented by the use of proprietary hardware,
closed software architectures and communication protocols
implemented by the robot manufacturers. In particular
commercial robot controllers are programmable via their
own procedural languages that run on proprietary
hardwares. This feature limits the possibility to extend the
robot capabilities, and the implementation of advanced
sensing capabilities, as force conirol or vision systems, is
not a trivial task. In the last years the wide availability of

low cost computing power, interface cards for dala
acquisition and operating systems with real-time
capabilities made, in the last decade, PC-based solutions
for robot motion control feasible [1]-[4].

Beside universities and research laboratories, cven the
industrial world of numerical control manufacturers is
locking with interest to PC-based solutions as
demonstrated by their membership in research consortia
aimed at the purpose of proposing standards for open
architecture controllers: OSACA', OMACY, OSEC® and
OROCOS*, [7].

Despite the efforts that have been put so far, no widely
recognized standards arose, neither in terms of reference
architectures nor in terms of software tools (operating
systems and programming languages).

Moreover, scripting languages are growing in popularity
inside  the programmers’ community and  their
characteristics makes programming more and more simple:
their diffusion is increasing in the computer world, but
their adoption in the industrial world is at the beginning.
Nowadays robot programming is still related to elementary
structures and limited by low level structurcs and
functions. Despite programming ecasiness and high-level
characteristics of modern scripting languages, they are not
yet uscd to program robot, excluding a few examples [8]-
[10]. In our research we evaluated the programming
features of different scripting languages; finally our choice
has been in favour of Python [11]. In this work we exploit
the benefits deriving from object-oriented design, very
high-level structures and rich libraries, some of Python key
features [12], [13].

In this paper we analyze how the Python programming
environment has been developed and interfaced with a PC-
based control system, whose core is a QNX real-time
platform programmed through C-++ code.

The designed solution has been applied for the motion
control of a novel 4 d.o.f. reconfigurable parallel kinematic
machine, thus exploiting the benefits deriving from the
defined modular control architecture [14].

The work is organized as follows: Section /7 illustrates a
general high-level overview of the control system, in
Section [T the correspondent software implementation is
detailed with reference to the QNX4 operating system, in
Section /) the use of Python in the programming and
monitoring functionalities of the system is explained and a
demonstrative  application  of  the  Python-based
programming system is reported in Section FI/.

Finally, conclusions and future works are drawn in
Section FIIL :

" Open System Architecture for Controls within Automation systems
* Open Modular Architecture Controller

* Open System Environment for Controllers

* Open RObot COntrol Sottware
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II. CONTROL SYSTEM COMPONENTS

With reference to Fig. 2 the whole control system can be
subdivided in the following basic components.

The Interprefer takes care of decoding a high-level
motion command specified by the user into a well defined
data structure containing the detailed specification of the
motion command, i.e.:

e geometrical data:

o interpolation path that connects the current
location to the target one (linear, circular...);

o target coordinates (position and orientation
of the tool center point (TCP)) and
corresponding derivatives;

e frame data: specifies the frames under which the
geometrical data are referred to;

e motion profile data:

o motion of the TCP specified in terms of its
corresponding  acceleration profile (sine,
bang-bang, ...);

o velocity values at the motion end-points;

o peak velocity of the TCP motion profile.

All the steps involved at this stage have been
implemented through the Python programming language
(Section IV).

A very first level of safety check is performed at this
Tevel to verify the physical consistency of the user data like
joint position and velocity limits.

The Trajectory Generator acts through three different
levels:

o first a Cartesian path is generated according to the
geometrical data specified in the motion data
structure;

o the Cartesian path is then sampled according to the
motion data profile;

o finally the sampled trajectory is transformed via
kinematic inversion to actuators coordinates
setpoints.

Servo-Controller. Tts aim is to keep the actual actuators
coordinates as close as possible to the corresponding
setpoints by means of a proper control algorithm.

The Interface-driver is the software interface component
to the interface card that allows bi-directional data
communication between the controller and the robot. Its
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Fig. 2. Coutrol system components

functionality is twofold:
e it provides time synchronization to the whole
control system;
e allows sensors signal readings (encoders, analog
and digital inputs) and the writings of command
current setpoints.

[II. SOFTWARE IMPLEMENTATION OF THE
CONTROL

A. The QNX4 gperating system

The core components of the high-level scheme described
in Section II have been implemented under QNX4. QNX4
is a commercial real-time operating system manufactured
by QSSL, characterized by a micro-kemel architecture
[15]. The kernel itself is devoted only to a restricted
number of services to the other processes: it provides a
message passing mechanism and performs scheduling
activities.  The whole operating system is constituted of
modules built on top of the kemel communicating with
each other by means of messages. A generic QNX
application is conceived reflecting the OS architecture and
can be built as a group of processes that communicate with
each other by means of the operating system’s Inter
Process Communication (IPC) resources as messages,
queues and shared memory [16], [17].

B. Communication infrastructure

Each component of the general high-level scheme
described in Section II has been treated as a regular QNX
process (and in one case as a Python thread) with its own
priority of execution (Fig. 3).

The processes interface with each other by means of a
different communication mechanism among those
described in Section III-A depending on a case by case
basis. In particular, when processes with different
computational loads have to share data, an asynchronous
communication channel is needed and FIFO queues are
employed. This occurs twice in the layout of Fig. 3:

e communication data structures describing a2 motion
command between the interpreter and the trajectory
generator that takes place by means of the
cmdQueue queue;

e setpoint actuator’s coordinates produced by the
trajectory generator and then fetched by the servo-
controller from the trjRefQueue queue.

Conversely, in case of synchronous data communication
of the servo-controller and the interface driver, messages
are used.

Data addressed to the tcplpServer process are
stored in the Shared Memory allowing a complete
decoupling between the data producer and the data
consumer.

With reference to Fig. 3 the control system is constituted
by the modules detailed hereafter.

1) Interpreter: The Interpreter has been structured in
two different levels. The high-level command interpreter’
is aimed at:

* Implemented as methods of the Morpheum class described in Section
-A
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Fig. 3. Layout of the control system’s processes
(corresponding priorities in brackets)

e parsing the user command containing geometrical,
frame and motion data (Section II) making the
proper consistency checks;

e performing the appropriate matrix transformation
calculations to feed the target coordinate expressed
in the base frame as requested by the low-level
command interpreter,

e invoking the proper low-level command interpreter.

It is realized through the use of the Python language,
permitting to integrate and call robot commands through
an high-level general purpose language. The high-level
command interpreter calls the appropriate low-level
command through a Telnet connection.

The low-level command interpreter is made up of a set
of standard executables, one for every kind of geometrical
path interpolation (linear, circular, ...); each of this low-
level primitives accepts as a command line parameter the
geometrical data referred to the robot base frame and the
motion profile data.

The only aim of these primitive commands is to insert a
motion data structure into the command queue and
terminate after the successful accomplishment of the
operation: no calculation takes place at this level. Being
these commands standard executable files that can be run
on the system shell, it is possible to execute them on a
remote console via a standard Telnet session (Section V),

2) triGen(16): The trajectory generator collects a
command data structure from the cmdQueue, calculates
the refercnce values and puts the corresponding actuator’s
references onto the trjRefQueue,

3) servo(27): Collects motion references in joint space
from the trjRefQueue. After acquisition of actual
actuator’s coordinates, executes the control algorithms and
writes the corresponding control command (current
setpoint) to be passed to the robot motor’s drives.

4) IOBoardDriver(29): It is normally in a Receive ()
status listening for a client call: a request of a sensor value
or a DAC voltage setting or the handling of timer-triggered
interrupt for synchronization purposes. This is achieved by
low-level readings/writings of the board registers mapped
into the PC memory.

3) tepipServer(10): Control data can also be accessed by
an HMI computer (Section IV-D) by means of the TCP/IP
protocol. To this aim, this process reads control data from
a shared memory region and writes a coded string onto a

socket connection,
IV. PYTHON PROGRAMMING AND MONITORING

The high-level interpreter in the control system (Section
II-B.1) and the HMI interface have been developed in
Python [11]. The reasons which essentially influenced this
choice have been:

o Multi-platform - different
execute the same code;

° High speed - in respect to other interpreted
languages it presents high performances of
execution [18];

» High-level structure - easy implementation of
functions and programs through a very smart
syntax;

o Object-oriented - encapsulation, inheritance and
polymorphism are available thanks to Python
object-oriented structure;

e Rich [libraries - a number of mathematical,
graphical and auxiliary libraries can be imported;

° Embedding - easy integration with C/C++ routines.

operating  systems

A. Objects implementing

With reference to the object-oriented structure of
Python, an object-oriented view of the physical entities to
be controlled has been applied. Some classes have been
implemented, each of them characterized by properties and
methods typical of what they represent in the physical
world. Typical examples are:

e The Morpheum class (relative to the robot prototype
named Morpheum) constitutes the high-level
command interpreter of Section III-B.1. Tt is
supplied with methods to communicate
bidirectionally with the control system by sockets
and Telnet and permits to command the machine by
an high-level language (macro movement,
possibility to set different tools and reference
systems in the workspace and other useful
functions).

e The Camera class controls transparently the digital
camera installed on the machine and communicates
at low-level with it: high-level methods substitute a
series of low-level Telnet instructions. An higher-
level class (CameraDemo) has been created
inheriting Camera, and supplied with methods
dedicated to the demonstrative application.

Classes are useful for the creation of workeells (Section
VII), equipped with robots, cameras and other sensors. A
machine class can be implemented with generic methods
and properties; successively inherited to create classes for
specific tasks or applications,

Programming and monitoring several robots can be
realized creating several instances of the machine class.

B. Useful Python functionalities

Here we list a few Python’s instructions and

functicnalities which can be useful for robot programming.

e Pickle to save/load objects. It can be usetul to
manage various machine configurations.
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s Lists, Tuples and Dictionaries are structures to
manage data and sequences. An cxample can be
referring to different entities in a workeell.

o Threads to command independently machines,
based on stand-alone processes, and coordinate
them by the use of Semaphores and Conditions.

e Exceptions to manage errors and critical behaviours.

C. Libraries

Python high-level and performing libraries, freely
available, constitute one of the key features of the system.
Mathematical, graphical and communication’s routines
present a very compact and user-friendly syntax, combined
with powerful and efficient results. MatPy, VPython and
Fnorb are examples of the libraries used respectively for
matrix  caleulus, 3D simulation and CORBA
communication.

D. Graphical interface

The Python architecture presented has been completed
with a graphical interface based on the WxPython library
and realized using the programming environment Boa-
Constructor [19]. In Fig. 5 an example is reported.

E. Threads
The HMI functioning is based upon four distinct threads:

e Wx process - dedicated to manage the graphical
interface and 1its associated events, such as users'
mnputs.

e UpdateVideo process - created to refresh
informations and data displayed on the screen.

s Generation process - deals with the management of
the part-program, both static and dinamically
created, and the sending of related commands to the
control.

e UpdateMach process - is a thread embedded in the
Morpheum object and consequently independent
from the graphical interface. Its task is data
updating, reading them through the socket
connection. For details see Section V.

In Fig. 4 data flow across threads is schematized.

V. THE PYTHON-CONTROL COMMUNICATION

The Python-based programming system communicates
in a bidirectional way with the control system (Fig. 6).
Data are exchanged between the computers through an
Ethernet connection which guarantees a fairly high-speed
of communication, simple scalability of the system and
low cost of implementation.

oL

[:lgdafeMach Generat?r

Wx

\_j
4 fchine at2 4
&
Qz’qot’if?é Machine k/@

(Morpheum)
Fig. 4, GUP's Threads

.Fig. 5. Graphical interface and 3D virtual simulator

The communication is realized using two different
protocols, according to the different characteristics of the
data exchanged.

At a predetermined frequency the control PC sends, to
the Python-HMI PC, data describing the state of the
machine (reference and actual positions of joints, currents
of motors, etc.) get by the digital-analog card, and data
describing the control process (length of references and
commands queues, cycle times, etc.). Data are stored in a
sting and sent by a server process using sockets
(TecpIpServer). Consequently they are intercepted and
interpreted by an appropriate client Python module.

Data sent by the Python module are low-level command
instructions implemented as independent executable and
called through the Telnet protocol.

VI. THE EXPERIMENTAL SETUP

An overview of the experimental setup is shown in Fig.
6. All the control modules described in this paper except
the high-level interpreter have been coded in C/Ct++ on a
standard off-the-shelf personal computer running QNX4.
The PCI bus of this PC is endowed with a passive /O
board (manufactured by Precision MicroDynamics Inc.
[20]) which allows acquisition of four incremental encoder
channels, four analog input/output, and several digital 1/O.
It is worth to notice that the interface board is used only for
data acquisition and voltage writings, since all calculations
take place on the PC.

A second PC is used as operator console (commands are
specified via the Python high-level interpreter) and for
visualization purposes (Fig. 5).

The controller is currently being used for the motion
control of a 4 d.o.f. reconfigurable parallel robot designed
for assembly/pick&place operations [21]. The robot is
endowed with three linear motors that are aimed at
translating the tool in space plus a rotational brushless
actuator that provides the end-effector an additional
rotation. The positions are measured via incremental
encoders and current setpoints are imposed via standard
+10V signals.

In addition, the system is equipped with a digital
camera, connected through Ethernet with the Python PC, to
acquire images from the workspace.

VII. A ROBOTIC CELL EXAMPLE

A robotic cell has been virtually devised to illustrate the
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Fig. 6. Scheme of the experimental setup

versatility of the use of Python as high-level control
language, to plan and command a complex task. The robot
cell (Fig. 7) is constituted by:

e a parallel machine with 4 D.O.F. (3 translational + 1

rotational) [21] equipped with a vision system;

e atool crib;

e apiece storchouse;

¢ amechanical part.

We assume that the mechanical part has 3 surfaces
whose normals belong to parallel planes (condition due to
the configuration of the machine which is supplied with
only 1 rotational d.o.f.). Some holes are present on every
surface (each of them presents different-shaped holes),
repeated according to the same pattern. The normals of the
surfaces and the origins of the patterns are considered
known. A target position in the world space coordinate
system, passed by the high-level to the low-level control, is
computed through the use of reference systems described
as follows. The first auxiliary reference system (called
workobject - WO), relative to the world system, is
positioned in a useful point on the part, while the second
one (called foolobject - TO) is relative to the end-effector,
according to the loaded tool.

Once the mechanical part is positioned inside the cell,
the vision system acquires the positions of the holes on the
surface which is perpendicular to the view direction of the
camera, referring their coordinates to the reference system
of the considered surface. During the executing cycle, the
robot fills each hole with the suitable piece, fetched from
the storechouse by the correct tool.

] piece
storehouse

mechanical
part

Fig. 7. Scheme of the demonstrative application

Some movement instructions are preceded by setting the
correct coordinate system (expressed with a property of the
Morpheum object), while each change of tool is followed
by sectting its TCP reference system.

Using the high-level syntax of Python each logical entity
of the cell can be represented with the more suitable
Python object. In our sample cell the robot has been
implemented with an object created with appropriate
methods to control the machine. Surfaces are stored in a
list of dictionaries to give a numerical index to each of
them, while both Tools and Pieces are stored in two
dictionaries of dictionaries to obtain a sort of database (the
key can be expressed by an alphanumeric strings).

The ftree-like structure of the cell object written in
Python is an abstraction of the logical configuration of the
real robotic cell. In Fig. 8 a schematic structure of the cell
object is represented.

An exemplifying code for the workcell programming is
here listed:

class BaseCell:
def _ init__ ...
def AcquireHoles...
def TakeTool...
def LeaveTool...
def TakePiece...
def LeavePiece...

~oy A W =

def Setup... 8
def Run(self): 9
pass 10
def Start(self): i1
self.Run() 12

class DerivedCell (BaseCell):
def __ init_ (self):
from config import data
BaseCell. init (self)
self.Setup (data)
def Run(self):
HolesInWO = self.AcquireHoles ()
for Surface in self.Surfaces:
Piece = self.Pieces[Surface[’Piece’]]
Tool = self.Tools[Piece['Tool’ 1]
self,TakeToocl (Tool)
for Hele in HolesInWO:
self.TakePiece (Piece)
self.leavePiece (Surface,Hole)
self.LeaveTool (Tool)
WorkCell = DerivedCell ()
WorkCell.Start{)

HeoME SE e R SR SR OSE BE SE TR 4R i T SR Sk SR 30 88 3% b b up e Ok 96 SR ok ob
s
w

Lines 2-8 define methods belonging to the workeell,
independently of the application. For example,
AcquireHoles () and TakeTool{) are methods,
respectively, to acquire through the camera the positions of
the holes and to take a tool from the tool crib. Referring to
Section IV-A, AcquireHoles () and TakeTool ()
include Morpheum and Camera classes to interact with the
correspondent physical devices.

Lines 10-11 declares the Run () method, called by the
Start ()} method (lines 12-13) to execute a task.

The DerivedCell (line 13) inherites the BaseCell.
__init_ () (line 14) and Run () (line 18) methods are
integrated to initialize the cell and to define the execution
task.

After the setup phase (line 14-17) self.Surfaces,
self.Pieces and self.Tools describe the cell con-
figuration.

During the execution phase, after the acquisition of the

131



Cell_

Phisical paramelers |

Movement instruction |

Communication parameter |

Surface i |
Work Object ]

iy g

Fig. 8. Structure of the WorkCell Object

image (line 19), for every surface (line 20) the appropriate
tool is loaded (line 23) and the holes (line 24) are filled
(line 26) taking the correct piece (line 25).

Lines 28 creates the cell object and line 29 starts the
execution of the program.

Using object inheritance, different methods, typical of
the cell but independent of the application, are
encapsulated in a base class (BaseCel1l). A derived class
is declared inheriting the base one and integrated to
execute a specific task.

VIII. CONCLUSIONS AND FUTURE WORK

An original framework for PC-Based robot control has
been presented in this paper. The core components of the
system are implemented on a standard Personal Computer
running the QNX4 real time operating system and
endowed with comimercial /O interface boards. An
operator remote console can be connected for
programming/monitoring  purposes.  The  modular
architecture of the controller allowed the integration of the
Python programming language as a tool for robot task
programming. The high-level structure of Python code
recalls the physical layout of the cell allowing code
readability, reuse and maintainability.

Future research activity will concern the use of CORBA
as a communication infrastructure between the control and
the HMI, linking the developed system o research
activities within the OCEAN® project.
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