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Abstract — The control problem of the spatial tentacle
manipulator is presented. In order to avoid the difficulties
generated by the complexity of the nonlinear integral -
differential model, the control problem is based on the
artificial potential method. It is shown that the control of a
tentacle robot to a desired position is possible if the artificial
potential is a potential functional whose peint of minimum is
attractor of this dissipative controlled system. Then, the
method is used for constrained motion in an environment
with obstacles.

Numerical simulations for spatial and planar tentacle
models are presented in order to illustrate the efficiency of
the method.

Keywords — potential, control, hyper-redundant system.

L INTRODUCTION

A tentacle manipulator is a hyper-redundant manipulator
or hyper-degree-of-freedom manipulator and, over the past
several years, there has been a rapidly expanding interest in
the study and construction of them.

The control of these systems is very complicated and a
great number of researchers tried to offer solutions for this
difficult problem. In [1] it was analysed the control by
cables or tendons meant to transmit forces to the elements
of the arm in order to closely approximate the arm as a truly
continuous backbone. Also, Mochiyama has investigated
the problem of controlling the shape of an HDOF rigid-link
robot with two-degree-of-freedom joints using spatial
curves [7], [8]. [mportant results were obtained by
Chirikjian and Burdick [3]-[6] that laid the foundations for
the kinematic theory of hyper-redundant robots. Their
results are based on a “backbone curve” that captures the
robot’s macroscopic geometric features. The inverse
kinematic problem is reduced to determining the time
varying backbone curve behaviour. New methods for
determining  “optimal”  hyper-redundant manipulator
configurations based on a continuous formulation of
kinematics are developed. In [2], Gravagne analysed the
kinematic model of “hyper-redundant” robots, known as
“continuum” robots. Robinson and Davies [9] present the
“state of art” of continuum robots, outline their areas of
application and introduce some control issues.

In other papers [10, 11, 12] several technological
solutions for actuators used in hyper-redundant structures
are presented and conventional control systems are
introduced.

All these papers treat the control problem from the
kinematic point of view and few researchers focus their
efforts on the dynamic problem of these systems. The
dynamic models of these manipulators are very
complicated. In [13] is proposed a dynamic model for
ryper-redundant structures as an infinite degree-of-freedom

contimmuum model and some computed torque control
systems are introduced. In [14] a dynamic model for an
ideal planar tentacle system is presented and optimal
control solutions are discussed. In [I5] a sequential
distributed control is proposed for a tentacle manipulator
actuated by electrorheological fluids.

The difficulty of the dynamic conirol is determined by
integral-partial-differential models with high nonliniarities
that characterise the dynamic of these systems.

In [21] the dynamic model for 3D space is inferred and a
control law based the energy of the system is analysed.

In this paper the method of artificial potential is
developed for these infinite dimensional systems. In order
to avoid the difficulties associated with the dynamical
model, the control law is based only on the gravitational
potential and a new artificial potential. It is shown that to
drive the tentacle robot to a degired position it is possible if
the artificial potential is a potential functional whose point
of minimum is attractor for this dissipative controlled
system. Also, this method is used for constrained motion in
the environment with obstacles. :

The paper is organised as follows: section 2 reviews the
basic principles of a tentacle manipulator; section 3 presents
the general model of this system; section 4 introduces the
unconstrained control problem; section 5 discusses the
constrained control problem; section 6 verifies by computer
simulations the control laws for a 2D and 3D tentacle
manipulator.

II. BACKGROUND

‘We will consider an ideal tentacle arm, with a uniformly
distributed mass and torque, with ideal flexibility that can
take any arbitrary shape (Fig. 1), Technologically, we will
analyse a backbone structure with peripheral cells that can
determine the shape of the arm by an appropriate control.
We will neglect friction and structural damping,.

The essence of the tentacle model is a 3-dimensional
backbone curve C that is parametrically described by a
vector 7{s) € R® and an associated frame ®(s) eR*™ whose
columns create the frame bases (Fig. 2a). The independent
parameter s is related to the arc-length from the origin of
the curve. We denote by [ the total length of the arm on
curve C.

Figure 1. Tentacle model.



Figure 2. Tentacle system parameters,

The position of a point s on curve C is defined by the
position vector,
7=7(s) M
where s € [0, []. For a dynamic motion, the time variable
will be introduced, 7 = F(s,t) :

We used a parameterisation of the curve C based upon
two “continuous angles” 6(s) and q(s) [3]-[6], (Fig. 2b). At
each point F( ,r), the robot’s orientation is given by a
} and its

right-handed orthonormal basis vector ie,€,,e,

origin coincides with point F(s,t) , where the vector e, is

tangent and e, is orthogonal to the curve C.
The position vector on curve Cis given by

@

F(s,t) = [x(s,r) y(s,t) z(s,r)]T
' where
x(.s' t)= “]‘sfn 0(s'.1)cos g(s’,1)ds’ (3)
0
yis,t)= E:[cos B(s",+)cos q(s",t)ds' (4)
0
z(s,)= ?sin qls"0)ds' )

0
with s'[0,5] We can adopt the following interpretation
[2, 6]: at any point s the relations (2)-(5) determine the
current position and the matrix @ contains the robot’s
orientation, and the robot’s shape is defined by the
behaviour of functions 6(s) and ¢(s). The robot “grows”
from the origin by integrating to get F(s,t) :
The velocity components are
¥

v, = J‘(, §'sing'sin® +0'cosq’ cos 9’)515' (6)
0
5

v, = I( g'sing’ cos0'— ~ ' cos g cos B )d (7)
0
&

v, = J qeosg'ds' 8

0
For an element &m, kinetic and potentia! energy will be
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dr = é—dm 2 )]
dV =dmn-g-z (10)
where
dm = pds (1D
From (8)-(11) we obtain,
2
(s
T =§p {J(— gsing'sin® +0'cosq'cos 6’}2’;’) +
o\ \o
' 2
+ { I(—- §'sing’ cos®' — &' cos ¢’ sin 9')&5'] +
0
5
+ fq’cosq ds (12)
0
V= ngIsmq'dS'dS (13)

00

We will consider Fy(s,?), (s t) the distributed forces

on the length of the arm that determine motion and
orientation in the 0 - plane, g - plane. From [21] we obtain
the mechanical work,

L ljtj(Fg (5,2)0(s.7)+ F, (5,2 (s. ) ads

a4
00
where 6, ¢ denote
0(s,7)= @(s,r) (15)
ot
. _ Oq
gls.t)= Hé-t-—(s,t) (16)
The energy-work relationship will be
[r(0)+ ()] [r(0)+ v (0)]=
it
= ”(FQ (s,%)0(s,7)+ By (s,r)c}(s,r))drdv an
00

where T(#) and 7(0), ¥(¢) and F(0) are the total kinetic
energy and total potential energy of the system at time ¢ and
0, respectively.

II. DyNAMIC SYSTEM

In this paper, the manipulator model is considered as a
distributed parameter system defined on a fixed spatial
domain Q= [0,7] and the spatial coordinate is denoted by s.

The dynamic model of this manipulator with
hyperredundant configurations can be obtained, in general
form, from Hamilton partial differential equations [13, 18]
of the distributed parameter model,

dalt, s)

ot Bv(t s) (1)
ovies)  BH

a Sw(t,s)JrF(r’S) G2



where ® and v are the generalized coordinates and
momentum densities, respectively, and 6(-)/ 5() denotes a

functional partial derivative.
The state of this system at any fixed time ¢ is specified by

the set (co(t,s),v(t,s)), where ©= [9 q]T. The set of all
functions of s that ®, v can take on at any time is
state function space I(Q) We will consider that
F(Q)C Ly (Q) The control force is the distributed vector
force along the arm

F=[F F,J

A practically form of dynamical model expressed only as
a function of generalised coordinates is derived by using
Lagrange equations developed for infinite dimensional
systems,

(20)

a_f[ﬁé(r,s)] " S0(s) 500s) @y
5[5‘?&’3)} ~ 3q(r.s) i 8qlt,s) f (22)

In [14, 21] this model has been studied and the
difficulties of this complex mathematical descriptions were
presented.

The great number of parameters, theoretically an infinite
number of parameters, the complexity of the dynamical
model make the application of the classical algorithms to
obtain the control law very difficult. In much of the
literature concerned with the control of these systems, the
complexity of the problem is emphasized and various
methods that compensate all nonlinear terms in dynamics in
real time are developed in order to reduce the complexity of
control systems [4-6]. Also, simplified procedures are
introduced or the difficult components are neglected in
order to generate a particular law for position or motion
control. In all these cases, these methods require a large
amount of complicated calculation so that it is difficult to
implement these methods with usual level controllers. In
addition, the reliability of these methods may be lost when
a small error in computation or a small change in system's
parameters occurs [13, 18],

In the next section, the artificial potential method is
extended to the control problem of this manipulator.

1V. TUNCONSTRAINED CONTROL PROBLEM

The artificial potential is a potential function whose
points of minimum are attractors for a dissipative controlled
system. It was shown [13, 16, 17, 19] that the control of
robot motion to a desired point is possible if the function
has a minimum in the desired point. In this section we will
extend this result for the infinite dimensional model of the
tentacle manipulator.

We consider that the initial state of the system is given by

oy =o{0,5)=[8y, gp]

vo=v{0.s)=[0, of

where

(23)

24)
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0y =0(0,5) gy =ql0.5) se [0,1]

corresponding to the initial position of the manipulator
defined by the curve Cy

Cp - (Bo(s) gols)) s ef0.1]

The desired point in I'(§2) is represented by a desired

(25)

(26)

position of the arm, the curve C,
og=[04.94], va=[0.0]
Cy 2 (0405) q4(s)) s <[0.1]

The system motion (21), (22) corresponding to a given
inifial state (0)0, vp) defines a trajectory in the state
function space I'(Q2).

The control problem of the manipulator means the
motion control by the forces Fy, F; from the initial

@7

position Cy to the desired position C.

From the viewpoint of mechanics, desired position
(wg, vg) is asymptotically stable if the potential function
of the system has a minimum at

(0 vis)= (04, vaks) s<l0d]

and the system is completely damped [13, 16].

As a control problem, we will extend the result of [13]
and we will change the dynamic and static mechanical
properties by modifying the potential function.

We will consider the control forces,

(28)

5V sV
Folt,s) = i = Fpy g
olts) 50ts) ¢ 50(t.s) &)
1% sv"
Flts)l=—F  ——, X
) 50(,s) 19 qlts) selo] G0

where first terms compensate the gravitational potential,
second terms assure the damping control and the third
components define the new artificial potential introduced in
order to assure the motion to the desired position, The
minimum points of this potential must be identical with
desired positions of the manipulator, as attractors of its

motion. For example, the potential 7" can be selected as a
functional of generalised coordinates,

700)= Jl0-046) +(g-aulF o

]

G
Of course, it is clear that this functional has a single
minimum for

0(r,5)=04(s), qlt.s)=g4(s) selo]

The potential 7" can be defined, also, as a functional of
position coordinates (x, ¥, z),

I
P (x,3,2)= [{oe- 26 + (v yals)F + (-2 (s)? Ji

0

(32)

(33)
where xy, v4, z4 are obtained from (3)-(5) for

8(s.2)=04(s). gls.0)=qals) s <[0d].



The control law (29), (30) modifies the system potential
and the Lagrange equations (21}, (22) become

af sT ST 5p"
—| = - =F 34
atl\se(z,s)] 59(!,s)+56(t,s) O (34
af T 5T sv*
— - - =F, 35
ar[aq(:.s)J 5q(is)  Sales) % o)

The force components Fy, . F, represent the damping
components of the control [12, 13, 18], and have the form

!

Fy, (s,1)=— [Kp(s,s)0(s".1)ds" (36)
5}
!

E (s.1)= fJ'Kq (s.5")g{s" ¢ )ds" (37
3]

where Kpfs,s') K, (s,s") are positive definite specified

spatial weighting functions on (QxQ) For practical
reasons, the derivative components of the control have the
form

Kols.s")=8(s - 5') kels) @8)
K, (5.5)=8(s — ') ky(s) (39)
and (34), (35) become

Fy, (5.4)=—kg(s)-6(s.) (40)
Fy (1) =-ky(s)-dls.1) (1)

Theorem I If the potential function ¥~ has a single
minimum at (md, vg) the motion of the system (34), (37)
converges to the desired position and the desired state
(w4, vg) is asymptotically stable.

Proof. See Appendix 1.

The force control (36), (37) represents a very important
component of the control law that ensures the damping
control of the system, For the following, we will consider
the particular form (40), (41) that represents the derivative
components of the conventional controllers. The selection
of the parameters ka(s), kq(s) can be obtained from the

classical methods of the PD controllers. Also, in [13] it is
proved that this derivative control is optimal with respect to
an optimal index. We will extend this result for the
distributed parameter model of the tentacle manipulator.

Consider the performance index associated to minimum
energy,

I

Iméfj 97 (s, )k~ (s s @)
a0

where

K7 (s)= dfag(kgf (s) &7’ (s))(43)

Theorem 2. For any potential function V*(OJ, v), the

control law (40), (41) is optimal in the sense that the
performance index (42) is minimized.

Proof. See Appendix 2.

V. CONSTRAINED CONTROL PROBLEM

Let B be the region of the state space where the
mechanical system motion is not admissible, its
complement B is the region of admissible movements and
6B is the boundary of B. The control problem is to

determine the potential function V *(G,q) which would
determine the mofion to the desired position
(wg(s) vals)) se[04] and it does not penetrate the

constrained area B. In the terms of the artificial potential,
this means that this functional should have a single

stationary point in B and grows without limit when the
system penetrates the boundary &8 .

We will consider the following artificial potential [16],

V" (0,.9)=maxly; (6.9) V3 (6.9)]
where ¥ (6,¢) is the artificial potential for unconstrained

(44

problem and ¥,(8,) is the potential for constrained
control problem.
¥5(8,g) is a nonnegative, continuous functional defined

in B and

Tim V5 (0,q)= (45)
d—0
where d is the distance between the current state (S,q) and
the boundary 0B .

VI. SIMULATIONS-

In this section, some numerical simulations are carried
out on 3D and 2D tentacle manipulators.

Example 1. We consider a spatial tentacle manipulator
that operates in OXYZ space. The mechanical parameters
are: linear density p=2.2 kg/m and the length of the arm / =
0.3 m.

The initial position of the arm is assumed to be
horizontal (0Y-axis),

0(s.0)=0; q(s.0)=0; s€0,03] (46)

and the desired position is represented by a line in OXYZ
frame that is defined in terms of motion parameters as

T se [0,0.3]

T
e =—; :—;
als)==7 gals)=

The unconstrained control law is given as (29), (30)
where the gravitational potential ¥ has the form [21]

@7

Is
v =pg [ fsing'ds'ds (48)
00
where ¢'=g(s'),s'€[0,s] the artificial potential is
obtained from (31), (47)

V" (0.q)= Ij{(e(s)f%]? +[q(s)_35£]2}ds

0

and the damping control components have the form (40),
{41) are selected as to minimize the performance index (42)
with

kg (s)=kyls)=1.015,

49

sel0.] (50
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Figure 3. 3D model motion.

Phase Portrait

dferron/dt

error

Figure 4. Phase portrait for 3D-motion.

To simulate the dynamical model it is used the integral-
differential mode! discussed in [21]. A discretization of the
Q) — space with an increment A=0.05 m is used

s =i-A1=12 ..,6

and a MATLAB system is applied. The result is presented
in Fig. 3. We see the initial position (on the OY axis), the
final position and also several intermediary positions.

The phase portrait of the evolution is plotted in Fig. 4
where the error for the global system is defined as

o)~ [(a5.)- 20 6)) + (0(s.)- 0, ks

We see the stability of motion and error convergence to
Zero,

D

Fxample 2. A better understanding of the control can be
obtained for 2D-tentacle arm.

We analyse now the case of a planar tentacle model in
OXZ plane. The dynamic model is obtained for the case
0 = 0. The initial position is determined by the vertical line
(OZ-axis),

q(S,O) = i

and the desired position is given by

b

selo,03] (52)
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Figure 6, Phase portrait for unconstrained control problem

gals;)= %- sin%, i=12,..6 (53)

The artificial potential has the form (49) and the
unconstrained law has the damping component for

kg =1.015.
The results of the simulation are presented in Fig. 5 and
the phase portrait is plotted in Fig. 6.

Example 3. We will consider the constrained control
problem for the planar model. The initial position is the
vertical position (52) and the desired position is given by

qalsi)= ‘g‘ se0.05]

A constrained area B defined in XOZ plan by the circle,
0B : (x—3F +(z-6) =2.25 (55)
is imposed.

The artificial potential ¥ (g) is obtained from (44), (45)
with

(54

Vi (g)= ;[[q(s)gds (56)
73 () {m d(:aB) } 57
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Figure 7. 2D motion for constrained control problem
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Figure 8. Phase portrait for constrained control problem

where T represents the terminal point vector of the arm and
* and c are selected as [16],

A=1 c=001.

The result of the simulation is presented in Fig. 7 and the
phase portrait is plotted in Fig. 8.

VII. CONCLUSIONS

The paper treats the control problem of a tentacle
manipulator, In order to avoid the difficulties generated by
the complexity of the nonlinear integral-differential
equations that define the dynamic model of this system, the
control problem is based on the artificial potential method.
This method is developed for these infinite dimensional
systems with unknown dynamical model except for the
gravitational component.

It is shown that control of a tentacle robot to a desired
position is possible if the artificial potential is a potential
functional whose point of minimum is attractor of this
dissipative controlled system. Also, this method is used for
constrained motion in the environment with obstacles.

These results are illusivated by simulation of several
tentacle models in 2D and 3D space.
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APPENDIX 1

The proof is immediately [13, 16, 18, 21].

Consider a Liapunov functional based on total energy the
system

w(t)=T()+ V() (58)
and, from (17), the derivative will be

W)= [(Ro, (5080500 + Fy, (5.0a0s. )

0
By using the control (34), (35), we obtain

(59

10)= = 6600 5006 s K, 5.4 s
o0 (60)
W(t)<0 (QED)
APPENDIX 2
Define the new Hamilton functional
H (0,v)=T(w0,v)+ ¥ (@) (61)

Let IT(w,v,¢) be the minimum value of the performance
index (42),

e, v.t)= min 1
FeF

(62)

where F is the domain of any admissible control functions
F= [FB Fq}r. For the optimal control problem defined by
the system (18), (19), (61) with the performance index (42),
the dynamic programming equation will be [18].
ai(wve) . |Yen” sH”
R e min 4 ||

ot FeF |5\ Bo v(t,s)
g [_ su”

I -
——|-——+F |+=F K7'F |ds 63
¥ ov 8m(t,s)+ J+2 } } )

The optimal control 7~ that satisfies the right-hand side
of this equation is

e (64)
but, from [18], the optimal solution of IT is given by
(wv.t)= H (0v,2) (65)

Substituting (62) in (61) and using the equation (18), it
can be readily deduced that

* -y &
=-K""— 66
F K r (66)
or, for the components
Fy (s.t)= k5" (5)- O(s) )
Fy(s.t)=-k;"(s)-4(s)  QED. (68)
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