Directional Grid Based Map Building Algorithm for Mobile Robot
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Abstract — In this paper, we report an enhanced grid-based
map-building methodology. The proposed algorithm is an
improvement over traditional grid-based map-building
algorithms since the information obtained {rom the sensors
posture and grid cells probability in each measurement are
utilized. The proposed algorithm is evaluated by simulation as
well as experiments. The results indicate that the proposed
algorithm is better than the traditional algorithms especially in
highly un-constructed indoor environment.

I. INTRODUCTION

One of the important tasks to be performed by a mobile
robot is to understand the environment from sensor readings.
Historically, different approaches have been used in the
robotics literature.  Grid-based models, also known as
occupancy grids, use a 2D array to represent the environment.
Each cell, usually square-shaped, is used to represent free
space, occupied space or unknown space. This low-level
grid-based approach proves to be very useful for map
building using sonar sensors [1-3]. Grid-based maps are
considerably easier to learn, partly because they facilitate
accurate localization and partly because they are easy to
maintain,

Sonar sensors provide a relatively low-cost range
measurement device for robot applications. The principle of
operation is based on measuring the time difference between
a packet of transmitted ultrasonic waves and the detected
echoes (the details of operation of the Polaroid ultrasonic
sensor can be found in [4]). Moreover, the beam angle will be
considered as 12.5° from the primary axis of the sensor [7,8].
Therefore, if multiple reflections of the range data are not
taken into account, the use of probability distribution function
[6-8] for modeling the 25° radiation cone provides a fairly
accurate method to represent the angular and radial
uncertainty of the sonar data. However, sonar sensor suffers
from several severe problems, such as poor angular
resolution, specular reflection, crosstalk, etc. In order to
provide better accuracy for the sonar measurements, various
modelling techniques have been proposed. Kuc and Siegel
[9] proposed a widely used sonar sensor model to model the
sensor impulse response. Barshan and Kuc [10] proposed to
use a two-transducer system to differentiate the difference
between the sonar reflections generated by corner and plane
according to amplitude and range values as functions of
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inclination angle. However, it requires relatively complicated
hardware setup. Thrun [11] used the back propagation
training method applied to an artificial neural network to map
number of sopar measurements to occupancy values, They
claimed that their approach could easily be adapted to new
circumstances and multiple sensor readings were interpreted
simultancously. Jorg and Berg [12] proposed pseudo-random
sequences together with a matched filter receiver to reduce
the crosstalk generated by a set of sonar sensor operating
simultaneously. However, it may cease to operate if there is
any irregularity on the detected object. Harris and Recce [13]
performed a quantitative test on the sonar data for various
orfentations and distances between the wall and the sensor.
Gutierrez-Osuna and Janet [14] proposed probabilistic model
of sonar sensors using back-propagation neural networks
trained from experimental data that captured the multi-lobal :
pattern generated by sonar sensors due to specular reflection.
However, it required a rather complicated set-up and the
neural network had to be re-trained if the irregularity of the
surface was different from the training phase and service.

In this paper, a novel approach on integrating the benefit
of occupancy grid based map and metric map approach is
reported. The orientation of the sensors during making
measurement will be used to enhance the accuracy of the
occupancy grid cells. The state of each cell in the grid map
will not be only represented by a probability value (i.e. the
cell is being occupied), but also the grid cell estimated
direction will be updated for each grid cell.

This paper is organized as follows: In Section 2, the complete
implementation of the directional grid map will be discussed.
Section 3 will show the result of the proposed method and the
paper will be concluded in Section 4.

DIRECTIONAL GRID BASED MAP BUILDING
ALGORITHM

II.

The traditional grid-based map building algorithms use
single probability value for each grid cell in order to represent
the occupancy of particular location, In this paper, instead of
using single probability value, a three dimensional vector is
used to represent the probability of particular cells as being
occupied as well as the direction of the grid cell. The
proposed algorithm is summarized in the following sections.



A. DIRECTIONAL GRID CELL (DGC)

Each cell in the directional probability grid map contains
a Directional Vector (DV) which is formed by two values
namely occupancy value p,.. and estimated direction p,
The p,.. represents the possibility of a particular cell being
occupied or not and it just like the traditional approach [1]
whereasthe p, represents the direction of the grid cell. The
DV can be visualized by a 3D vector as depicted in Figure 1.
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Fig. 1 A 3D vector model for the Directional Probability Vector (DPV) p., .

In Figure 1, the vertical axis represents the possibility
value p,,. of the DGC, the angle between the vector and the

x-y plan is the grid cell orientation ¢, , and the horizontal axis
(i.e. x and y) constitutes the estimated direction ¥, of the

DGC. The length of the DV will be always equal to 0.5 so that
the p,.. € {0,1} since the DV is pivoted at 0.5 along the
Z-axis.

The estimated direction will be used to tune the
probability distribution function pdf of the sonar sensors and
it will be discussed in the next section.

B. UPDATE RULES FOR THE DPGC MAP

The pdf for each sonar measurement will be used to
integrate with the DGC in each sampling interval. The pdf
will be chosen as the zero-mean Gaussian Probability
Distribution function and it is depicted in Figure 2. The p.d.f
that is used to model the occupancy probability of the range
reading of the sonar sensor is as follows:
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where € is the azimuthal angle measured with

respect to the beam central axis.

@ is the mean azimuthal angle measured with respect to
the beam central axis.

cra?' is the variance of the angular probability.

x is the distance that away from the sensor

o,” is the variance.

m, is the maximum range of the sonar sensor.
r is the sensor range measurement of the sonar sensor
z is the true parameter space range value.

Fig. 2 Gaussian Probability Distribution Function of Sonar sensor.

The estimated angle ¢, and grid cell orientation o,

obtained from each sonar measurement is depicted in Figure
S
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Fig. 3 The sensor’s probability angle & and estimate direction 19'3
extracted from the pdf.

The update rule for each DGC in the DGC map is
summarized as follows:
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In each sonar measurement, the probability value of
particular cell C; from sonar sensor r will be
plr1s(C;) =occ] and it will be used to calculate¢r,. The

updated grid cell orientation ¢,' and estimated direction
#," will be updated by Equation (5) and (6) respectively.

L. RESULTS

The test platform of the proposed algorithm was an
in-house-built mobile robot “Explorer” (Figure 4). The
weight of the robot is 20 pounds and can carry a payload as
heavy as 151bs. The driving mechanism of the robot consists
of two dc reversible motors with dead reckoning and 2 castor
wheels. The perception system of the robot consists of 12
Polaroid ultrasonic ranging sensors, evenly distributed
around the robot, to provide object detection and ranging
information to the on-board 11.0592MHz Intel 89c¢52
micro-controller. The maximum detected range of the sensor
is 3 meters (i.e. m, =3m ) and the maximum data acquisition

rate is 4.3/sec/sensor. The sensory information and control
variable can transfer to the supervisory computer via RS-232
for remote monitoring and control. The robot is powered by a
single 12VDC 16Ah sealed lead acid cell, which provides
about 5 hours run per charge.

b) Sensors” location.
Fig. 4 Experimental setup

The robot is driven to move in the pre-defined path for
meodelling the environment as shown in Figure 5a. The robot
path as well as the DGB map using the proposed algorithm
are shown in Figure 5b and Figure Sc respectively. In both of
the experiments, the size of grid cell is 5cm x Scm and the
robot is controlled remotely from the host computer.
Moreover, unlike the traditional approach that the input range
reading need to be threshold, the robot uses the maximum
range rteading (i.e. m, =3m ) throughout the whole

experiment. In Figure 5c, we can see that the proposed
algorithm can provide a clear grid based map. Moreover, one
can see that the grid cells which were scanned by the sensors
in opposite directions can obtain with high probability of
occupancy (e.g. middle of Figure 5¢) whereas the grid cells
which were scanned by the sensors in one direction only
obtain relatively lower probability of occupancy. Unlike the
traditional approach [1], the proposed algorithm can give the
idea of the feature of the modelled environment since the
probability of particular grid cell can not approach 1 (i.e.
around 0.7) means the environment is not fully explored or it
is a thick wall. On the other hand, if the probability of
particular grid cell approaches 1, the environment which is
being modelled is a thin wall.



L [&

= i
Note: Al dimensinne are in s
The environment being model

a).

o |

Start

b) The robot path

¢) DBGmap
Fig. 5 Experimental result

IV.CONCLUSION AND FUTURE WORK

In this paper, a novel grid based map building algorithm is
reported. Unlike the traditional probability grid based map
building methods in which the occupancy of the environment
is modeled by only a probability of grid cells, the proposed
algorithm shows that the environment can be modeled by a
grid cell that combine the directional information and
probability of occupancy. Experiment shows that the
proposed algorithm can also give a clear and relatively lower
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computational cost method to obtain a grid based map. The
directional information of the DGB map will be used for path
planning in the future research works since it gives indication
of an area being fully or partially explored.

IV REFERENCE

1. H.P. Moravec, A. Elfes, “High resolution maps form
wide angle sonar,” Proc. 1985 IEEE Int. Conf. Robot and
Automat., St Louis, MO, pp116-121, March, 1985.

A. Elfes, “Sonar Based Real-World Mapping and
Navigation”, IEEE Journal of Robotics and Automation,
Vol. RA-3, No.3, June 1987, pp249-265.

A. Elfes, “Using occupancy grids for mobile robot
perception and navigation,” IEEE Computer, vol. 22, no.
6, pp46-57, June 1989.

Polaroid Ultrasonics Group, Ultrasonic ranging system
manual. Technical Report, Polaroid Corporation,
Atlanta, GA, 1992.

G. Oriolo, G. Ulivi and M. Vendittelli, “Fuzzy Maps: A
New Tool for Mobile Robot Perception and Planning™,
Journal of Robotic Systems 14(3), 179-197(1997).

Hans P. Moravec, “Sensor Fusion in Certainty Grids for
Mobile Robots”, Al Magazine 9(2), Summer 1988,
pp61-74,

Leonard J. J. and Durrant-Whyte, H.F. 1992. “Djrected
Sonar Sensing for Mobile Robot Navigation®,
Cambridge, MA: Kluwer Academic Publishers.

David Lee, “The Map-Building and Exploration
Strategies of a Simple Sonar-Equipped Robot: An
Experimental Quantitative Evaluation™, Distinguished
Dissertations in Computer Science, Cambridge
University Press.

Kuc, R. and M. W, Sicgel, “Physically Based Simulation
Model for Acoustic Sensor Robot Navigation”, IEEE
Transaction Pattern Analysis and Machine Intelligence,
9(6): 766-768, 1987,

Barshan B. and R. Kuc, “Differentiating Sonar
Reflections from Comers and Planes by Employing an
Intelligent Sensor”, [EEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.12, No.6, June
1990, pp560-569.

Thrun 8., “Exploration and model building in mobile
robot domains”, Proceedings of the International
Conference on Neural Networks 1993, Ed. E. Ruspini,
175-180. 28 March-1 April 1993, New York: IEEE
Neural Network Council.

Jorg K. and M. Berg, “Sophisticated Mobile Robot Sonar
Sensing with Pseudo-random Codes”, Robotics and
Autonomous Systems 25 (1998) 241-251,

Haris, K. D., and M. Recce, “Experimental modelling of
time-flight sonar”, Robotics and Autonmous Systems 24
(1998), 33-42.

Gutierrez-Osuna, R. and J. A. Janet, “Modeling of
Ultrasonic Range Sensors for Localization of
Autonomous Mobile Robots”, IEEE Transactions on
Industrial Electronics, Vol.45, No.4, August 1998,
pp654-662.

10.

1.

12.

13.

14,





