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Abstract— Human caregivers play an important role during
child’s development phases. A human tutor often modifies
a task context so that information is easily perceived and
learned by the child. We propose to use the same strategy
to teach a humanoid robot. Contrary to standard supervised
learning technigues relying on a-priori availability of training
data obtained manually, actions by an embodied agent (the
human) are used to automatically generate training data
for the learning mechanisms, so that the robot develops
categorization autonomously.

The work presented in this paper follows a developmental
approach to perception and learning. This framework based
on human-robot interactive communication is demonstrated
to apply naturally to a large spectrum of computer vision
problems: object segmentation, visual and cross-modal object
recognition, object depth extraction and localization from
monocular contextual cues, and learning from visual aids —
such as books.

I. INTRODUCTION

Embodied and siteated perception [3] consists of boost-
ing the vision capabilities of an artificial creature by fully
exploiting the opportunitics created by an embodied agent
situated in the world [2]. Proponents for Active vision [1],
[8], contrary to passive vision, argue for the active control
of the visual perception mechanism so that perception is
facilitated. Percepts can indeed be acquired in a purposive
way by the active control of a camera [1]. This approach
has been successfully applied to several computer vision
problems, such as stereo vision - by dynamically changing
the baseline distance between the cameras or by active
focus selection [14].

We argue for solving a visual problem by not only
actively controlling the perceptual mechanism, but also
and foremost actively changing the environment through
experimental manipulation [3], [12]. The human body plays
an essential role in such a framework, being applied not
only to facilitate perception, but also to change the world
context so that it is easily understood by the robotic
creature (the humanoid robot Cog used throughout this
work is shown in Figure 1).

Although a human can help the robot to extract mean-
ingful percepts from the world, it should be emphasized
that such help should not include constraining the world
structure in anyway, such as the removal of environment
clutering or carcful luminosity setup, among others, since
both children and robots exist in real, not virtual, worlds.
Instead, the focus should be placed on communicating
information to the robot which boosts its perceptual skills,
helping him to filter out irrelevant information. Indeed,
while teaching a toddler, parents do not remove the room’s

-

Fig. 1. The experimental platform. The humanoid robot Cog is equipped
with cameras in an active vision head, a microphone array across the torso
and two robotic arms. Some typical learning scenarios (from left to right,
top to bottom) a human shows a book to Cog; a human describes the shape
of an object to the robot; a repetitive action {(hammering) is demonstrated
to the robot; a human waves a yellow car to create a salient stimulis on
Cog’s attentional system.

furniture or buy extra lights to just show the child a book.
Help instead is given by facilitating the child’s task of
stimulus selection (for example, by pointing or tapping into
a book’s image). ‘

This paper presents a human-centered approach to facil-
itate the robot’s perception and learning, while showing
the benefits that result from introducing humans in the
robot’s learning loop. This work aims at teaching humanoid
robots as children, being the child’s mother role attributed
to a human tutor. With that in mind, next section will
present software tools developed to enable human-robot in-
teractions during important learning activities for children:
playing with toys, tools, books and drawings. An approach
for learning the structure of the robot’s surrounding world
is presented in Section III. Such structure is inferred from
cues introduced by humans. Finally, conclusions are drawn
in Section IV, together with a discussion on ongoing work.

I1. HUMAN-ROBOT PLAYING ACTIVITIES
A. Books

During developmental phases, children’s leaming is of-
ten aided by the use of audiovisuals and especially, books.
Humans often paint, draw or just read books to children
during the early months of childhood. Bocks are indeed a
very useful tool to teach robots different object representa-
tions or to communicate properties of unknown objects to
them (such as a whale’s visual appearance). We present a
human aided object segmentation algorithm [7] to extract
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the visual appearance of objects from the background
(mainly the book pages). which is illustrated in Figure 2

IV A standard color segmentation algorithm is applied
to a stationary image (stationary over a sequence of
consecutive frames)

2) A human actor waves an arm on top of the object to
be segmented

3) The motion of skin-tone pixels is tracked over a
time interval (using the Lucas-Kanade Pyramidal
algerithm), and the energy per frequency content is
determined for each point’s trajectory

4) Periodic, skin-tone points are grouped together into
the arm mask [3].

5) The trajectory of the arm’s endpoint describes an al-
gebraic variety over N2, The target object’s template
is then given by the union of all bounded subsets (the
color regions of the stationary image) which intersect
this variety

Object mask  Object Template

Stationary image

Color Segmentation

Actuator Templare

Fig. 2. A standard color segmentation algerithm compules a compact
cover for the image, The actuator’s periodic trajectory is used Lo extract
the object’s compact cover — a collection of color cluster sets.

The algorithm consists of grouping together the col-
ors that form an object. This grouping works by having
periodic trajectory peints being used as seed pixels. The
algorithm fills the regions of the color segmented image
whose pixel values are closer to the seed pixel values,
using a 8-connectivity strategy. Therefore, points taken
from waving are used to both select and group a set of
segmented regions into the full object. Clusters grouped
by a single trajectory might either form or not torm the
smallest compact cover which includes the tull object
(depending on intersecting or not all the clusters that form
the object). After two or more trajectories this problem
vanishes.

Periodic detection [7] is applied at muliiple scales.
Indeed, for an arm oscillating during a short period of time.
the movement might not appear periodic at a coarser scale,
but appear as such at a finer scale. If a strong periodicity
is not found al a larger scale, the window size is halved
and the procedure is repeated again for each half.

This strategy. which enables the robot to learn from
books, relies heavily in human-robot interactions. It is
essential to have a human in the learning loop to introduce
objects from a book to the robot (as a human caregiver does
to a child), by tapping on their book’s representations. This
scheme was successfully applied to extract templates for

lruits. geometric shapes and other elements [rom books.
under varying light conditions — statistical resalts are

presented in Figure 3, while Figure 4 shows a collection
of segmentation samples.
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Fig. 3. a) The humanoid robot looking at a book. Segmentation of
geometric shapes from the book are also shown. b) Staristical analysis
for object segmentation from books. Errors are given by (lemplate area
- object’s real visual appearance area)/(real arca). Positive/negative errors
stand solely for templates with larger/smaller area than the real atea,
respectively. The real area values were determined manually.

Fig. 4. Templates for several categories of objects (for which a repre-
sentative sample is shown). were extracted from dozens of books. Two
subjects not acquamnted with the algorithm were also briefly instructed
on the protocol for inicracting with the robol. No noticeable performance
degradation was found from such interactions.

B. Toys and Draw Sketches

Object representations acquired from a book are inserted
into a database, so that they become available for fu-
ture recognition tasks. However, object descriptions may
came in different formats - drawings. paintings, photos,
etc. Hence, methods were developed to establish the link
between an object representation in a book and real ob-
jects recognized from the surrounding world using the
object recognition technique described in [7], as shown
by Figure 5. Except for a description contained in a book,
the robot had no other knowledge concerning the visual
appearance or shape of such object.

Additional possibilities include linking different object
descriptions in a book, such as a drawing (also shown in
Figure 5). Other feasible descriptions to which this frame-
work is being applied include paintings. prints. photos and
computer gencrated objects.

C. Plaving with Tools and Toys

Children extract meaningful percepts by playing with
tools and toys with a human caregiver. The latter can show
the child (or a robot) how to play a hammer and the
buang sound that it makes upon impact. Due to physical
constraints, the set of sounds that can be generated bv



Fig. 5. a) Object recognition and location. The train appears under a per-
spective transformation in a bedroom scene - generated by the DataBecker
Software. Estimated lines are also shown. Scene lincs matched to the
object are outlined. b) Recognition of geometric, manual drawings of a
triangle and a circle from the description of objects learned using books.
¢) Geometric shapes of a square and a banana recognized using the
descriptions from a book.

manipulating an object is often quite small. For toys which
are suited to one specific kind of manipulation — as rattles
encourage shaking ~ there is even more structure to the
sound they generate [11]. When sound is produced through
motion for such objects the audio signal is highly correlated
both with the motion of the object and the tools’ identity.
Therefore, the spatial trajectory can be applied to extract
visual and audio features — patches of pixels, and sound
frequency bands — that are associated with the object (see
Figure 6), which enables the robot to map the visual
appearance of objects manipulated by humans or itself
to the sound they produce. Cross-modal integration from
robot’s multiple sensing modalities is described in detail
in [5], [I1].
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Fig. 6. a) A human playing with a hammer, which bangs in a table,
producing a distinctive audio signal. b) A human moves a hammer
repetitively producing sound upon impact, which is matched to the visual
trajectory. ¢} top: tracking an oscillatory instrument; down: image of
object segmentation and display of a detected visual/sound matching.

D. Educational Activities: Painting, Drawing

A common pattern of early human-child interactive com-
munication is through activities that stimulate the child’s
brain, such as drawing or painting. Children are able to
extract information from such activities while they are
being performed on-line. This capability motivated the
implementation of three parallel processes which receive
input data from different sources: from an attentional
tracker [12], which tracks thc attentional focus and is

-

attracted to a new salient stimulus; and from an algorithm
that selectively attends to the human actuator for the extrac-
tion of periodic signals from the trajectory of oscillating
skin blobs [6].

Whenever a repetitive trajectory is detected from any
of these parallel processes, it is partitioned into a col-
lection of trajectories, being each element of such col-
lection described by the trajectory points between two
zero velocity points with equal sign on a neighborhood
(similarly to the partitioning process described in [11]). An
object recognition algorithm previously described in [7] is
then applied to extract correlations between these sensorial
signals perceived from the world and geometric shapes
present in such world, or on the robat object database (see
Figure 7), as follows:

1) Each partition of the repetitive trajectory is mapped
into a set of oriented lines by application of the
Hough transform.

2) By applying a recognition scheme [7], trajectory
lines are matched to oriented edge lines (from a
Canny detector) on

a) a stationary background,
b) objects stored in the robot’s object recognition
database.

This way, the robot learns object properties not only
through cross-modal data correlations, but also by corre-
lating human gestures and information stored in the world
structure (such as objects with a geometric shape) or on its
own database.

Fig. 7. a) A human is painting a black circle on a sheet of paper with a
ink can. The circle is painted multiple times. The top row images show
the activity being performed. The first image from the left on the botlom
row shows the hand trajectory. Edge lines of the background image —
middle image — are matched to such trajectory — last image. b) A human
draws a circle on a sheet of paper with a pen, which is matched into a
circle drawn and recognized previously (see Figure 5-b).

III. LEARNING ABOUT THE WORLD

Autonomous agents, such as robots and humans, are
sitnated in a dynamic world [9], full of information stored
on its own structure. For instance, the probability of a chair
being located in front of a table is much bigger than that
of being located on the ceiling. A robot should place an
object where it can easily find it - if one places a book on
the fridge, she will hardly find it later!

Thercfore, a statistical framework was developed to cap-
ture such knowledge stored in the world. This [ramework



consists of: learning 3D scenes from cues provided by
2 human actor; and lcarning the spatial configuration of
objects within a scene.

A. Building Scene Descriptions

The human arm structure relative to a scene structure
provides a natural way for constraining the object detection
problem using globa! informaiion (see Figure 8). The
environment surrounding the robot provides also additional
structure that can be learned through supervised learning
techniques.

Fig. 8. Segmentaticn of heavy. stationary objecis, A human teacher
shows the table and sofa 1o the robot, by waving on the objects’ surface,
so that the robot can then use the arm trajectory 1o link the objects to the
correct color regions.

A significant amount of contextual information may be
extracted from a periodically moving actuator — most often
such motions are from interactions with objects of interest
— which can be framed as the problem of estimating
Plonlus,,.acty’s), the probability of finding object n
given a set of local, stationary features v on a neighborhood
ball B of radius « centered on location p, and a periodic
actuator on such neighberhood with trajectory points in
the set S © B. The algorithm previously described to
learn information from books also offers a solution for
this problem. Segmentations for several furniture items on
a scene, together with statistical results for such objects,
are shown in Figure 9.
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Fig. 9. Statistics for the furniture items (a set of segmentation samples is
also shewn). A chair is grouped from two disconnect regions by merging
temporally and spatiallv close segmentations.
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1) 3D Environment Maps: Besides binocular cues, the
human visual system also processes monocular data for
depth inference. such as focus, perspective effects. among
others. Previous attempts have been made on exploring
scene context for depth interence [17]. However, these
passive techniques make use of contextual clues already
present on the scene. They do not actively change the
context of the scene through manipulation to improve the

robet’s perception. We propose an active. embodicd ap-
proach that actively changes the context of a scene, extract-
ing monocular depth measures. The human arm diameter
{(which is assumed to remain approximately constant for
the same depth, except for degenerate cases) is used as
a reference for extracting relative depth information. This
measure is extracted from periodic signals of a human hand
as follows:
1) Detection of skin-lone pixels over a image sequence
2) A blob detector labels these pixels into regions
3) These regions are tracked over the image sequence,
and all non-periodic blobs are filtered out
4) A region filling algorithm (8-connectivity) extracts a
mask for the arm
5) A color histogram is buill for the background image.
Points in the arm’s mask having a large frequency
on such histogram are labelled as background.
6) The smallest eigenvalue of the arm’s mask gives an
approximate measure of a fraction of the arm radius.
Once a reference measure is available, coarse depth
information can be extracted relative to the arm diameter,
for each arm trajectory’s point. A plane is then fitted
{(in the least square sense) to this 3D data. A scene is
defined by the uncertain geometric configuration of all the
objects. Figure 10 presents both coarse depth images and
3D reconstruction data for a typical scene in the robot's
lab.

Fig. 10.  An image of all the scene is huilt by converting retinal
coordinates into egocentric coordinates (the pan and tilt viewing angle
of the tobot's head). a) Furniture image segmentations— on top ~ and
depth map — hottom - for a scene in Cog’s room (lighter corresponds to
closer): b) Coarse 3D map built for the scene shown.

B. Context Driven Data Selection

World structural information will be exploited in an
active manner. Contextual control of the attentional focus
(location and orientation), scale selection and depth infer-
ence will be presented at two different categorical levels.
From a humanoid point of view, contextual selection of the
attentional focus is very important both te constrain the
search space for locating objects (optimizes computational
resources) and also to determine common places on a scene
to drop or store objects such as tools or toys.

The output space is defined by the 6-dimensional vector
I = (p.d.$. o), where §'is a 2-dimensional position vector,
d is the object’s oy, depth. 5= (w. h) is a vector containing
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the principal components of the ellipse that models the 2D
size retinal size of the object, and ¢ is the orientation of
such ellipse. Mixture models are applied to find interesting
places to put a bounded number of local kernels that can
model large neighborhoods. Therefore, given the context
Z one needs to evaluate the PDF p from a mixture of
(spherical) Gaussians G and G [13],

M
p(f, Elon) = E bm,nG(-'E: 77]‘m,ﬂ» Xm,n)G(Es l:':m,m C‘m,n)
m=1
where [{,., is the ¢ mean and Ci, ., the covariance for
cluster m and object n. The mean 7, , of Gaussian G is
a function that depends on & and on a set of parameters
Bmn- A locally affine model was chosen for the mean:
Bmn = (Gmns Az‘,n): T = Gmm + ATe.

The EM algorithm is then used to leam the cluster
parameters (see [13] for a detailed description of the EM
algorithm). The EM algorithm converges as soon as the
cost gradient is small enough or a maximum number of
iterations is reached. The number M of gaussian clusters
is selected automatically in order to maximize the join
likelihood of the data, using the Minimum Description
Length agglomerative clustering approach based on the
Rissanen order identification criterion [15].

Contextual information will be exploited at two dif-
ferent categorization levels, through two complementary
approaches:

> Object-centered context - which requires no visual

input, operating on egocentric coordinates

- Holistic-based context - which operates on wide-field-

of-view image coordinates

1) Object-based representation: This approach deter-
mines an object’s vector & using other objects in a scene as
contextual information. Training data consists of the data
stored and automatically annotated while building scenc
descriptions from human cues. A scene is modelled as a
collection of links, being each scene’s object connected to
any other object in the same scene. Each time an object
is recognized or detected from human demonstration, the
algorithm creates or updates connecting links. Each link
from object @ to object b, given z,, is defined by the
probability of finding object @ at state x, and object b
with state ©p = (ps,ds, 5, ¢p). On such approach, the
contextual feature vector is ¢ = Zq, 0n = 0 and T = Tp.
The vector p is the object’s location in the robot’s head
egocentric gazing coordinates (this mapping is estimated
using a supervised learning technique [4]). Figure 11 shows
results for selection of the attentional focus for objects
given the state data & of another object. It is worth
stressing that context priming prunes the set of candidate
objects to match the primed object, and therefore reduces
the computational resources required for object detection,
which is only applied into the more likely spatial locations.

2) Holistic-based approach: Given the image of an
object, its meaning is often a function of the surrounding
context. Ideally, contextual features should incorporate the
functional constraints faced by people, objects or even

Fig. 11. Top row shows the resuits of saccade movements by the robot’s
head to find previously learned objects. It is shown the object predicted
position, size and orientation. Bottom row shows image regions were the
object is predicted to lie within.

scenes (eg. people cannot fly, a hammer needs an external
force to be moved and offices have doors). Therefore, func-
tionality plays a more important role than more ambiguous
and variable features (such as color, for which selection, for
instance, depends on the taste of a decorator). Functionality
constraints have been previously exploited for multi-modal
object recognition [5] and for determining function from
motion [10], just to name a few applications.

As such, texture properties seem appropriate, which led
to the selection of Wavelets [16] as contextual features,
since they are much faster to compute than Gabor fil-
ters and provide a more compact representation. Input
monochrome images are transformed using a Daubechies-4
wavelet tree, along 5 depth scales. The input is represented
by v(®) = {vs(z.¥),k = 1,..., N}, with N=I5. Each
wavelet component is down-sampled to a 8 x 8 image, so
that %(z,y) has dimension 960.

The dimensionality problem is reduced to become
tractable by applying Principal Component Analysis
(PCA). The image features ©#(p) are decomposed into the
basis functions provided by the PCA, encoding the main
spectral characteristics of a scene with a coarse description
of its spatial arrangement. The decomposition coefficients
are obtained by projecting the image features vy (p) into
the principal components & = {¢;,4 = 1,..., D} (¢ denotes
the resulting D-dimensional input vector, used thereafter as
input context features). These coefficients can be viewed
as a scene’s holistic representation since all the regions
of the image contribute to all the coefficients, as objects
are not encoded individually. The effect of neglecting local
features is reduced by mapping the foveal camera (which
grabs data for the object recognition scheme based on
local features) into the image from the wide field of view
camera, where the weight of the local features is strongly
attenuated. The vector § is now given in the wide field
of view retinal coordinates. Figure 12 presents results for
selection of the attentional focus for objects from low-level
cues (wavelet decomposition) for a scene in the robot’s
laboratory.

There is still a lot of information that cannot be extracted
from scenes familiar to a robot (real elephants are not
common in humanoid research labs). But such information
from the robot’s outside world can be transmitted to
the robot by a human tutor using books, as previously
described.
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Fig. 12. Samples of scene images are shown on the first column. The next
four columns show probable lecations hased on contexi for the smaller
sofa, the bigger sofa, the table and the chair. respectively. Notice that, even
if the object is not visible or present, the system estimates the places
at which there is a high probability of finding such object. Two such
examples are shown for the chair — no matter the viewing angle, chairs
are predicted to appear in front of the table. It is also shown that occlusion
by humans do not change significantly the global context.

IV. CONCLUSIONS

Humans were introduced in the robot’s learning loop
to facilitate robot perception. We presented a compre-
hensive set of experiments that support such claim. We
demonstrated how on-line input from a human instructor
during playing activities can facilitate robot’s perception,
using books and other learning aids, and learning aclivities
such as drawing or painting. The implemented strategies
are suitable to extract cross-modal auditory and visual
information from tools (e.g., hammer), toys (such as rattles)
or musical instruments.

A human in the learning loop can also introduce the
robot knowledge concerning the robot’s surrounding world.
By actively describing objects on a scene, such as furniture
items, the robot was able to segment objects and further
built scene descriptions from such data. A probabilistic
framework was then developed to determine probable lo-
cations of objects.

A. Ongoing and Future work
This human-centered framework is currently being ap-
plied to other research problems,

a) Shape from Human Cues: Human cues were
shown useful to extract coarse depth measures, but they
can be also applied Lo extract information concerning the
object’s shape (at a coarse level), such as hollow parts or
object boundaries. This is achieved by having a human
to describe actively, wilh its fingers, the object contours
(possible benefits include removal of shadows).

b} Robot Localization and Map Building: This frame-
work for building scenes from human cues is also been
evaluated for simultancously map building and mobile
robot localization, using objects as natural landmarks (un-
der large uncertainty, however).

c) Task Detection: A task can be defined as a collec-
tion ot events on objects. A hybrid Markov Chain is being
used to model complex tasks such as sawing, hammering,
painting, drawing, among others [4].

d) Functional Object Recognition: A tool may have
different uses. For instance, a knife can be use to cut
(motion orthogonal to the knife's edge) or to stab (motion
parallel to the knife's edge), which involves two dilferent
functions for the same object. We are processing the motion
of a tool while executing a task to classify its function.

e) Recognition of Acoustic Patteras: A large corpora
of sounds annotated to cbjects is extracted from the algo-
rithm for cross-modal association. Such data is currently
being used to train a classifier,

1} Control Integration Grounded On Perception: The
integration of control strategies for both oscillatory and
reaching movements should be grounded on the percep-
tion, which determines the mapping between the perceived
motion of objects and how they shounld be manipulated.

And there are still other potential research directions to
explore for which humans can rcally give a fhand to help
learning on an embodied and situated robotic agent.
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