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Abstract - The aim of this paper is to demonstrate that the
techniques of Computer Aided Geometric Design such as spatial
rational curves and surfaces could be applied to Kinematics,
Computer Animation and Robotics. For this purpose we
represent a method which utilizes a special class of rational
curves called Rational Frenet-Serret (RF) curves for robot
trajectory planning. RF curves distinguished by the property
that the motion of their Frenet-Serret frame is rational. We
describe an algorithm for interpolation of positions by a
rational Frenet-Serret motion. Further more we provide an
elegant analysis on spatial frames (Frenet-Serret frame and
Rotation Minimizing frame) for smooth robot arm metion and
investigate their applications in sweep surface modeling.
Keywords - Motion Planning, Rational Frenei-Serret Curves,
Rotation Minimizing Frames, Frenet Serret Frames.

1. INTRODUCTION

In recent years, it has been realized that the methods of
Computer Aided Geometric Design (CAGD) provide elegant
tools for various tasks in Computer Graphics, Robotics and
Kinematics, especially for the design of rigid body motions.
Omne of the first contribution to this research area was the
spherical gencralization of the de Casteljau algorithm
introduced by Shoemake [15] in order to interpolate the
orientations of a moving object. More recently Ge and
Ravani [3,4] and Park and Ravani [12] presented methods for
constructing so-called Bézier motions by generalizing the
subdivision algorithm of Bernstein-Bézier curves.
Furthermore this concept has been extended to other arcas
such as spatial kinematics or robotics by introducing so-
called rational spline motions. Rational spline motions are
characterized by the property that the trajectories of the
points of the moving object are rational spline curves, i.e. the
trajectories are NURBS (non-uniform rational B-spline)
curves [6]. NURBS curves and surfaces became an industrial
standard (STEP) for the data exchange between CAD
systems. The main advantage of this approach is the data
conformity to state of the art CAD systems which allows
straightforward data transfer from CAM to CAD systems. So
the programming and control of robots could be done by
using of CAD data. In general these data specify the desired
trajectory of end-effector but not the orientation. In our
approach by using Frenet Seiret Frame we also specify the
desired orientation of end-effector to perform specific tasks
such as arc welding, spray painting and scanning of surfaces
with robot equipment.
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Rational motions can be said to be the direct
generalization of rational curves to kinematics. They are
defined by the property, that the frajectories of the points of
the moving object(s) are (piecewise) ratiomal curves.
Therefore we can apply the algorithms of CAGD directly to
these curves.

Using this approach the design of a Cartesian motion of an
end-effector is usually done by specifying a set of key
control configurations which are interpolated or
approximated. In interpolation the curve that passes through
each control point and in approximation the curve only
passes through the end-points. The other control points exert
a “pull”. So the intermediate points in approximation simply
have some influence on the shape of the curve.

The first who applied rational motions to motion design
were Ge and Ravani .Their interpolation algorithm is based
on rational dual quaternion curves. Another contribution has
been given by Johmstone [10] who used normalized rational
quaternion curves in order to interpolate orientations of a
moving object for animation.

In this paper we discuss a special class of rational motions
called Rational Frenet-Serret (RF) and apply this type of
rational motions to robot trajectory planning. In application
requiring control of the orientation of a rigid body, as its
center of mass executes a given path, alignment of body’s
principal axes with the Frenet Serret frame at each point
appear to be the solution. For this purpose we derive a
general formula for RF curves and by wusing this
representation the motion of end-effector in 3D space will be
achieved,

Our work is also analyzed the Rotation Minimizing
Frames (RMF) and Frenet Serret Frames (FSF) which are
associated with spatial curves. The RMF finds important
applications is animation and motion control, where the
orientation of a rigid body must be specified as its center of
mass cxecutes a given spatial trajectory. Another application
is the construction of swept surfaces defined by the motion
of a profile curve along a sweep curve,

This paper is organized as follows: first we arc going to
introduce basic notations and review some fundamentals in
spatial kinematics and the theory of rational meotions. In
section 3 we review the concept of Frenet Serret Frame and
investigate and address a few properties of RF curves and
derive a general representation formula for RF curves. In
section 4 we give an detailed algorithm for application of RF



curves in robot trajectory planning. In next section we study
the concept of Rotation Minimizing Frame with
computational relations and investigate the sweeping
surfaces and application of FSF and RMF for generating
these surfaces. Finally in secion 6 we finish with concluded
remarks and future works

II. BASIC NOTATIONS

In the sequel we describe the points p in 3-space with the
help of homogeneous coordinates
2=(Po»P1sP2,P3) €R’ \{(O,O,O,O)T}. For points not at
infinity, ie. p,#0, the corresponding inhomogeneous
Cartesian coordinates are p= (El’ﬂz’gs)r e R’ of the
every point p from p = p;/p, where i=1,2,3. The
homogeneous coordinate vectors p and Ap describe the
same point for any constant factor 4 # (. By analogously
we are going to use homogeneous plane coordinates P~ for
the description of planes. A point P lies in the plane P"if
<P, P">=0, where <> denote the canonical scalar product
in R¥or R*.

Consider two coinciding coordinate system in Euclidean
3D-space, the fixed coordinate system E°(“world

coordinate”) and the moving coordinate systeri £, Both
coordinate systems are associated with right-handed
Cartesian coordinates frames. Frame is an affine extension of
a basis: Requires a vector basis plus a point O (the origin):
F=({,9,,.,9,,0). Points can be described in ‘either
coordinate system. We denote the fixed coordinates of a
point by p orp, and the moving coordinates by por p
respectively. In order to convert moving coordinates into
fixed coordinates we have to apply the coordinate
transformation that maps E? into E°. Using homogeneous
coordinates, this transformation can be represented by a
4 x4 matrix

00 0
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Y
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where the 3x3submatrix R=(r;;), .., Ssatisfies the
orthogonality conditions
RRT =vlI, and det(R)>0.

A continuous one-parameter set of positions of E? defines
a motion M = M (t) where the parameter ¢ is assumed to be
the time. If all eclement functions of M =M(t)are

polynomials of degree 7, the motion M is said to be a
rational motion of degree ». In this case all points
trajectories  p(f)=M (). p are rational curves of general

degreen. Applying dual quaternion calculus one can prove
that every rational motion of degree 7 can be written

0 0 o]vo(d§+df+d§+d§)

m
M= 7,0 v: 2
V3
with the dual quaternion D = (d,,,d)" and
dl+d?  -2d,d,  2d,d,
—-d; -d} +2dd, +2dd,
bl 2dods & - df2 ~2d,d, o
+2dd, +d;—d; +2d.,d,
~2d,d, 2d,d, d}-d?
+2dd, +2d,d, -—d}+d}

Here v,v=(v,v, ,v3)T and Dare polynomials of degree
n—2k,nandk, respectively, where 0<2k<n. Four
parameters d,...,d, are Euler’s parameters of the rotational
part D of the motion [1].

Fig 1: the spational rational b-spline motion of degree 5

The design of rational motions is done most efficiently by
computing  polynomials  V,,v,Dthat match certain
prescribed constraints. The B-Spline representation of
M can be obtained by inserting them into (2} [6]. In this case
the motion Mis expressed by the help of Bemstein
polynomials of degree »:
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Fig 1. shows the spatial

where B7 (f) = [?_IJ(I -y
I

rational B-Spline of degree 5 for motion of a robot end-
effector.

HI. RATIONAL FRENET-SERRET MOTION

At each point of a regular space curve c¢(¢), the Frenet
Serret frame defines an orthonormal basis of vectors in
R®aligned with the local intrinsic curve geometry. The
elements of this basis are the curve tangent vector ¢, normal
vector nand binormal vector b Without loss of generality
we may assume that c(f) describers the point path of the
origin of the moving coordinate system. Let us further
assume that ¢(¢) is a twisted curve without inflection points
proper parameterization, ie.,
the motion of

and with
llex &) = 0,]¢
the Frenet-serret frame is given by

(000 1

(o ah)

With

_(exd)

lICIl lexd

In other word we can express the frenet-serret formula by:

xt, b=txn (6)

{ 0 kO
al=l-x 0 «¢|n (7
b 0 r 0\b

where x'is curvature (see Fig 2) and 7 is torsion: a plane
curve is completely determined by a single real valued
function, the curvature, and a space curve is completely
determined by two real valued functions, the curvature and
torsion.
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Fig 2: the curvature plot (left) and a porcupine plot of a cubic B-
spline curve (right). The endpoints of Bézier segments are indicated
on both plots.

In the sequel we will call a motion of type (5) the Frenet-
Serret motion of ¢(f). Taking (5) under consideration it is

obvious that the Frenet-Serret motion of a rational curve in
general will not be rational. We therefore want to
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characterize those curves ¢(f) whose Frenet-Serret motion
(5) is rational. Without loss of generality we may assume
that ¢(¢) has sufficient differentiability.

Definitionl. A curve whose Frenet-Serret motion is rational
is called a Rational Frenet-Serret curve (RF curve).
Theorem2. A curve ¢(¢) with nonvanishing curvature x(f)
is an RF curve if and only ifc(f) is rational and has rational
speed v(t) = ||é(z)u and rational curvature x(¢).

Proof. The unit vector ¢, the principal normal vector # and
the binormal vector b of c¢(f) satisfy the Frenet-Serret

equations:
d .

ds

L —

+7bh 8
-y T (3)

—Th

Where s denotes the arc length of ¢(¢). rewriting (8) with
respect to arbitrary curve parameter t immediately proves the
claimed conditions.

A curve with rational speed v(f)is called a rational
Pythagorean Hodograph (PH) curve. Such curves has been
investigated in a sequence of papers by Farouki and Sakkalis
[9], Farouki and Pottmann [8], and Pottmann [14]. Obviously
every RF curve is a rational PH curve, On the other hand
every planar rational PH curves has rational curvature, which
simply yields: A planar curve ¢(f) is an RF curve if and only
if it is a traditional PH curve. In space however, there exist
rational PH curves with nonrational curvature. If x is
rational we immediately obtain that the curve defined by the
unit tangent vector ¢ of ¢(f) has to be a rational PH curve as
well.

For presenting a general formula for RF curves we
consider a rational curve ¢(f}and its tangent surface @

which is enveloped by the set of osculating planes of ¢(?).
The curve c(¢)is called the line of regression of @. Using
homogeneous plane coordinates for @ we obtain the so-
called the dual representation ¢’ () of c(¢) (see, e.g., [13]),
which reads

¢ =(-<bec>b). (9)
Instead of computing a general representation formula of the
point set directly we focus on the dual form (9) of an RF
curve.

Theorem3. Let c(f)be an RF curve and ¢ (¢)is dual

representation.  Then  there  exist three  pairs
(a,b),(e, /) and (g,h) of palynomials such that
g(xt +x! +x37)
.| 2hxgx
c =\ (10)
2hx,x,

h(xy = x; = x3)



With
x, =(a’ +b*YNab—ab)f*

X, =%(a" ~b*Nef -ef)—(aa-bble f (11)

x, = (ab- alﬁ)ef —able f —e f)

proof. According to Farouki and Pottmann[8] each planncr
rational PH curve with homogenous coordinates
(xu,xl,xz)rhas a representation of the type (11). Eq. (10)

finally from ¢ =(g,hb)” by applying the

stercographic projection onto the unit sphere.
A paramefric representation of the point set c(¢)can be

results

obtained by calculating the intersection point of ¢’ (¢) and
the first and second derivative planeé” (£), &7 (7). This yield

e =c ()yxe (O)=é" (1) (12)

Theorem 3 together with (12) provides a straightforward
method for designing RF curves. In Fig 3 you see RF curves
for design a Cartesian motion of an end-effector. In Fig 4 RF
curves with some inflection points is shown. In this case the
orientation of frenet-serret frame does not remain constant
bascd on the curvature changes.

IV. RF CURVES APPLICATIONS

In the following we want to derive an algorithm for the
automated design of rational frenet-serret motions that
describe the Cartesian space frajectory of a robot’s end
efector. We assume that the motion is implicitly described by
the task level considerations, such that the trajectory of the
tool center point is a given curve ¢(¥) and the direction of

the z-axis of the hand coordinate system is described by a
vector fleld n(t).
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“ig 3: control points and rational b-spline curve (top) an
RF curve with frenet-serret [rame
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Furthermore we assume that n 15 normalized, i.e.
in(t) =1 ¥r. In arc welding, for example, ¢(¢)would be
the seam and n(t)a vector field related to the relative

positions of the electrode with respect to the bead of weld. In
applications that deal with the scanning of surfaces such as in
aircraft inspection on the other hand, ¢(7)would be a known

curve on the surface that has to be scanned and n(t)the

corresponding unit rormal vector to the surface.
First we observe that c(f) has to be a RF curve if we

want to achieve a rational robot trajectory. It is therefore
necessary to approximate the tool center point path by a RF
curve ¢(7). Then the orientation of the vectors in frenet-serret

frame specify the exact path and direction of end-effector.

For this reason we employ the following algorithm:

1. Specifying a set of key control configurations which
are interpolared (for end points) and approximated
(for other comtrol points or intermediate points).
End points have a special concept in robot trajectory
planning It shows the start and goal position.
Designing a rational {renet-serret curve based on
(12).

3. Achieving a spatial frame (frenct-scrret frame) for
each point on a trajectory. By means of this frame
direction of too! center point of a robot in space
could be easily determined. In fact each orthogonal

vector (¢, n, b) has a special meaning (section 3).
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Fig 4: control points and rational b-spline curve with inflection
points (top) and cquivalent RF curve with frenet-serret frame
(bottom)



V. ROTATION MINIMIZING FRAME ON RF CURVES

In application requiring control of the orientation of a rigid
body, as its center of mass executes a given path, alignment
of the body’s principle axes with the Frenet Serret frame at
each point may appear to be the obvious solution. However,
other useful orthonormal frames (e, ,e,,e,) may be defined

along a space curve. In most contexts it is natural to choose
e =t, and (e,,e,)are then obtained from (n,b)by a
rotation in the normal plane:

e, cos@ siné|in
e, —sin@ cos@ || b
This allow us to remedy indeterminacy of the Frenet Serret
frame at inflections, and also provides additional flexibility
to adapt the orthonormal frame to the requirements of
specific applications. An example is the Rotation Minimizing
Frame (RMF) for the construction of swept swrfaces, which
are defined by the motion of a planar profile curve along a
spatial sweep curve. The profile curve remains in the normal
plane of the sweep curve, but the variation of its orientation
in that plane must be specified. In Computer Aided
Geometric Design (CAGD), these frame have firstly beed
studied by Klok [11].

/

Fig 5: A tational b-spline curve (left), with control polygon. Also
shown are the Frenet Serret Frame (center) and Rotation
Minimizing Frame (right).

(13)

For the purpose of orienting a profile curve along a given
sweep curve, the rotation minimizing frame is preferable to
the Frenet Serret frame in the following sense (Fig 5) .
Considering (7) where dots indicate derivatives with respect
to s. This reveals that fchanges at instantaneous rate xin
the direction ofn. This instantaneous change of »n has two

components: rate— & in the direction of fand rater in the -

direction of b . Finally b changes at instantaneous rate — 7 in
the direction ofn. Now changes in the direction of ?are
unavoidable if we choose a basis withe, =t . The changes of

nin the direction ofb, and of bin the direction of n,
however, correspond to a rotation of these vectors in the
normal plane. A quantitative comparison between FSF and
RMF is presented in Fig 6 which shows the instantaneous
rates of rotation for both frames.
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By a suitable choice for the variation of the angle & in
(13), an orthonormal frame that eliminates this
“unnecessary” rotation may be defined. Klok [11] shown
that, withe, =7, the remaining basis vectors must satisfy

el(1) = e "(£)- ek(t) ‘
el

in order to define such a rotation-minimizing frame.

Substituting from (13), one can verify that this amounts to

the differential equation

de (c'xc".c”
=l =4el 7

!cxal

(), k=23 (14)

(15)

for the angular function @(z)used to obtain (e,,e,)from

(n,b). Hence, as noted by Guggenheimer [5], this function
has the form

0(t) = 6, - [ re'Goldu

3 A 4
—— rotation minimizing

(16)

T T T T

----- Frengtframe i

rate of rolation

00 01 02 03 04 05 66 07 08 08 10
t

Fig 6: Comparison of instantaneous rates of rotation for the frenet

serret frame and rotation minimizing frame.

Unfertunately, the above integral does not admit a closed-
form reduction for the polynomial and rational curves
employed in computer graphics, computer-aided design,
robotics and similar applications. Consequently, a number of
schemes have been proposed to approximate the rotation
minimizing frame of a given curve, or to approximate a
given curve by simpler segments (e.g. circular arcs) with
known rotation minimizing frames.

Farouki and Chang [7] have solved integral (16) for PH
curves. Since every RF curve is a rational PH curve, we
review summary of their works and apply their methods to
compute the RMF for RF curves.

For the hodograph ¢'(¢)} = (x'(£), y'(®),2'(f)) of a
polynomial curve to satisfy the pythagorean equation:
O+ 0+ () =)
where o(f)is a polynomial, it is sufficient and

necessary that its components be expressible [2] in terms of
polynomials u(7), v(¢), p(f), g(¢) in the forms

O =@+ - PO -0,
¥ (@) = 2u(®)q () + (O pO}
2(0) = 2v(H)q(@) —u(©)p()]
oty =u’ () +V () + p* (D) +4*(t)

(17

(18)



For PH curves we achieve |o'x c”lz =o’p where
polynomial p is defined by
p =4(up' —w'p)+ (ug' —u'q) + (vp' - v'p)]

(19)
+ 4[(vq’ -vg) + 2wV ~uv)(pq' - p'q)]
Based on [ 7], the solution of integral (16) is
=0 + (22 4., (5@
an=a,+ _EJ(T) dr + 206) dr. (20)
Where a(f)and b(¢) are two polynomial in
[ty " )" (#) = alt) p(t) + b (2). @21

Now we want to compare the sweeping surfaces

which generated by FSF and RMF. For this reason we study

some fundamental concepts of sweeping surfaces.

A sweeping surface S(u,v),

where (u,v) € [u,,u,]x[v,,»,] based on a 3D trajectory

curve C(u) with unit tangent vector #(x), is defined as

S(u,v) = C) +a (v)X(u) +a,(v)y(u) where:

o F(u)=(x), ¥(u),f (1)) is a dynamic orthogonal
frame along the trajectory;

o  a(v)={(a,(v).a,(v)) is a 2D cross-section curve
defined in the abstract XY plane, mapped successively
to each plane #(x) normal to the trajectory at C(u);

The moving frame is defined by the tangent vector f(u)of

the spine curve, along with unit vectors X(u), ¥(x) spanning

the normal plane of the spine curve at C(u). The sweeping

surface S(u,v)is generated by moving the cross section

curve a(v) along the spine curve C(u) .

We inspecting two problems that are related to the design of

the moving frame F'(u)and the associated sweeping surface

S(u,v):
o  shape: After choosing both the spine and profile curves,

the sweeping techniques leaves the designer with one
degree of freedom, as it is still possible to rotate the
frame F (1) = (x(u), ¥(u),7 (u)) around the tangent 7.
Clearly, the choice of this rotation has strong influence
on the shape of the resulting sweeping surface.

o Rational representations: the peicewise polynomial and
rational parametric representations have gained a
paramount position as descriptions for curves and
surfaces. However, a sweeping surface which is
generated by a rational spine curve and a rational cross
section curve is generally not rational. In order to apply
the Bezier and B-Spline technique to the moving frame,
it is desirable that the corresponding moving frame is
rational, too.
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Fig 7: Sweeping surface generated by the Rotation Minimizing
Frame (top) and by the Frenet-Serret Frame (bottom).

The shape problem will be handled with the help of RMF
that are associated with spatial curves. We are illustrated in
Fig 7 the sweeping surface generated by Rotation
Minimizing frame and by the Frenet Serret frame of a given
spine curve (thick line). In addition to the surfaces, the
normal planes of the spine curve at the segment end points
have been drawn.

In order to address the problem of finding a rational
representation, we use spatial RF curves as spine curves. In
our application, these curves are identified as the rational
curves wich possess an associated rational frame F'(u) .

VI. CONCLUSION AND FUTURE WORKS

In this paper we introduced a special type of rational space
curves called RF curves. We have proven that a rational
curve is an RF curve if and only if speed and curvature are
rational. Moreover we provided an application of RF curves
in robot trajectory planning. Furthermore the paper showed
in various examples that RF curves can be applied
successfully to any design algorithm that is based on a spine
curve. For many applications, but especially for the design of
sweeping surfaces, the Frenet—Serret frame is not the
optimal choice since it tends to twist around the curve;
therefore, it would be desirable to use a motion that
minimizes the angular velocity instead. So the concept of
Rotation Minimizing frame and application of these frames



in

sweeping surfaces presented in detail,

We finish this paper by pointing to some topics for further
research:

@

Generating optimal motions. It is an interesting problem
in robotics and NC machining.

Obstacle avoidance in trajectory planning with RF
curves.

Taking the optimization of RF motions with robot
dynamics into account to minimize time or energy
functions,

Advanced CAD/CAM interfaces. By applying the
rational motion techniques it is possible to use more
sophisticated geometric models.
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