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Abstract — The path generation method used by a Mobile robot
is dependent on the environment and the type of sensors used.
In this paper we present a path generation method that uses a
stereovision sensor and combines stereo images and single
image processing. The path generation method uses maximum
possible driving region detection based on the local difference
probability (LDP), path generation based on_the maximum
possible driving region and path correction based on obstacle
collision avoidance. The presented path generation method can
be used to drive a mobile robot in a large variety of structured
or unstructured environments. Highway image sequences
were used as environment simulation to test our method.

L. INTRODUCTION

The path generation process is strongly dependent on the
application environment. The environments can be divided
in two main classes: indoor and outdoor. For each kind of
environment there are two possible scenarios: one when the
mobile robot knows a start and a goal position and the other
when the mobile robot explores an unlimited area without
having a goal position.

For the case when the mobile robot knows the start and
goal position are many contributors (i.e. [1] [2] [3] [4] [5]).
The methods presented there generate many possible paths
and the optimal path is chosen, based on the shortest
distance to the goal position. These methods use a
predefined environment map and also an obstacles map,
generated using range sensors. In [6] the mobile robot
moving angle is decided in real-time using Fuzzy-Networks
based on natural potential field (register networks mapped
from the occupancy map). The number of possible moving
angles generated from the Fuzzy-Network layer is limited
by the user definitions. This means that detailed moving
angles cannot be generated. If the method is extended then
the operation will require extra time and the path will not be
generated in real time. Authors of [7] use a laser scanner to
obtain 3D information and the mobile robot is localized by
comparing a predefined image map with the 3D
reconstructed image map. There is a simple solution for the
localization of the mobile robot on a predefined map: using
a GPS sensor. However, this solution is not complete in a
changing environment.

In the second case, when the mobile robot is exploring
an unlimited area, there are not many contributors. This case
1s more related to autonomous vehicles and especially to
mobile robots exploring unknown terrains ([8] [9]).

Our proposed method can be used in both cases. In this
paper, we focus our attention on the mobile robot path
generation. There is no predefined goal position for the
robot. However, the goal position can be given and the

process of choosing the new goal position every time a new
path is gencrated can be skipped. The proposed path
generation method deals with the optimal path finding
regardless of the obstacles existence on the driving direction
and with the optimal path finding with respect to the
obstacles. The obstacles are detected using stereo
reconstruction combined with object grouping.

The optimal path finding process consists of maximum
possible driving region detection and dynamic _path
generation. related to obstacle absence and to obstacle
existence. The maximum possible driving region detection
is achieved by using a local difference probability (LDP).
The main idea of LDP is to construct the pixel extension
based on a difference between two pixels probabilities on
gray scale images. If the difference is smaller than a
threshold value then the initial seed is extended. The
threshold is determined by averaging distances inside the
selected sampled area. The sample area is selected from a
single image, right in front of the mobile robot. There is a
detailed explanation of the sample area selection and the
extension of the seed in Scction C.

The desired driving angle is obtained after the detection
of the maximum possible driving region. The main steps of
the process are presented below.

1) The obstacles, detected using stereovision
represented as rectangles in the image space.
Using a single image, the maximum possible driving
region is detected using LDP. The region represents a
map in the 2D image space.

Inside the driving region we choose a destination point
by imposing some simple safety constrains. A new
destination is choused in each image frame. For each
new destination a new travel path is generated.

In the first stage, a strait path is generated. This is a
linear path between the virtual mass center of the robot
and the destination point.

The rectangles representing objects in the image space
are adjust, in order to compensate as much as possible
the reconstructions and grouping errors. Also, the
rectangles are modified to meet the collision avoidance
requirement, by considering the dimensions of the
mobile robot projected in the image space at the object
distance.

The path of the robot is updated with respect to the
obstacles size and position. Only the obstacles that are
nearby the mobile robot and that have an acceptable size
are considered. This condition comes to reject fake
objects detection.
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In our experiments we evaluate our method in many real
situations. The results demonstrate that our proposed
method has encouraging characteristics from the dynamic
path gencration point of view:

i) The method can be applied in structured and
unstructured environments.

ii) The path is dynamically generated by considering
the current environment state.

iii) The complete 3D reconstruction is not necessary.

iv) High driving angle accuracy.

II. THE PROPOSED METHOD FOR DYMANIC PATH
GENERATION

A. Overview of the entire procedure

The dynamic path generation is accomplished by

constructs a driving region using a single image.

The new path is generated using the 2D map generated
by combining the results of the two driving region detection
methods. Figure 1 presents a schematic overview of the
entire dynamic path generation procedure. In the next
sections we describe the driving region detection and the
dynamic path generation process.

At the first step we use stereo image pairs to detect
objects. The result of this step is materialized in a 2D map
representing the projection of the detected 3D objects in the
image.

The map provided by the first step of the algorithm is
used by the second step te find a starting region for the
image growing region process. This step is used to recheck
the image regions marked as drivable (not covered by
obstacles) by the previous step.

Using the map completed by the second step, a new
path is generated. The path generation process represents a

Driving region detection
(using LDP)

combining two different  procedures: ome wusing  search in the 2D space of the shortest trajectory to the
stereo image pairs to detect obstacles and the other  selected destination point.
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Figure 1. Overview of dynamic path generation process

B. Objects detection using stereovision

The objects are detected using stereo image pairs at
320X240 resolution. We use SVS (Small Vision System) to
detect objects. In this paper we don’t present a complete
description of the stereo system. More details about
stereovision can be found in [10].

The detected 3D objects are mapped in the image space
as rectangle areas. To minimize the reconstruction and
grouping errors we consider only the objects that are nearby
the mobile robot and that have an acceptable size. By using
this constrains we eliminate the fake detections.

The 2D projection of the objects is used to adapt the path
to the destination to avoid obstacles,

C. LDP based maximum possible driving area detection

At this step we perform a possible driving area
detection using an image region growing process. The
process starts from the initial seed position of the sample
selected area. The image selected sample area is chosen in
front of the mobile robot by using a 2D map provided by the
previous procedure to avoid taking an image sample totally
or partial situated on an object. The case when the entire
image is covered by an object or there is not enough space to
move our robot must be treated like a special case. The
decision taken in this situation must consider the robot
capabilities (i.e. if the robot can rotate without moving then
we can chose another driving direction if the acquired
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images confirm that is safe to move the robot, or, if the robot
is not capable to rotate without moving the robot must stop).
The selected image sample gives us the starting point
(initial seed). The growing condition of the initial seed is
given by a threshold that is obtained by averaging distances
among the probabilities inside selected sample area.
The probability is calculated in every pixel of the sample
selected area. Figure 2 presents a graphical explanation of
the seed extension.
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Figure 2, Seed extension direction and Sub-window for LDP

For every pixel included in the sample selected area the
Local Difference Probability (LDP) is computed on a N4
type 3x3 neighbourhood.

Let’s take a randomly selected point X, ,, where 7 and

¢ are the row and the column of the input image. The four

neighbours of the current pixel are
Nr = {xi(r,c—l)3xi(r'—l.c)’ xi(r,c+l)3x((r+l,c)} , where 1 stands

for the neighbourhood identifier.
The LDP set in the N4 neighbourhood is;
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where the probability p, must satisfy the following two

conditions:

m
p,; =20 and Yp =1 (2)
k=1
where m is the number of neighbours and p, is the

probability of neighbours around p, .
The components of equation (1) are described below.
'(Ii(r,z)_.u(r.c))Z
ey

px|x,,)=e . where g4, . the mean of

the 3x3 sub-window around (r,c) and O, is the

standard deviation of the 3x3 sub-window around (7, ¢) .
The first order derivatives of the probabilities inside the 3x3

sub-window around (7,c) are:
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We emphasize the distances between the central points and
the mean around the central points using their square. The
reason why we have to square the distance is that the initial
seed is extended based on the difference between two
Gaussian properties, therefore our attention is concentrated
on the difference between them.

Each pixel has the Gaussian property. It means that if there
is a great difference between two Gaussian properties
obtained from two pixels we can assume that each pixel is
included in two different regions; if there is a small
difference between two Gaussian properties we can assume
that each pixel is included in the same region. This is the
main idea of LDP.

In order to arbitrate the relation between two Gaussian
properties we need a threshold. The threshold value is given
by the average of distances.

Using equations (3)~(7) we can compute the four distances

around (r,C).
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We discard the smallest and the largest distance values from
the distance sets corresponding to the road sampled area.

The distances average value is:
M-r 4

22 4®
— =1 k=1 9

% 4*M—r v
where M is the number of sets and r is the number of
discarded distances.
“dy, “ value is used as the threshold value of the region
growing algorithm,
Sometimes the initial seed is not extended completely to the
entire driving region. This is because the average distance is
obtained by random selection, It means that the threshold
doesn’t satisfy all distance variances between two local
pixel probabilities in the selected sample area. Therefore we
need an initial seed acceptance/rejection procedure.
The extended contour has to meet the following condition:
the number of expanded points in the contour has to be
greater than the number of pixels of the selected sample
area. The seed position that satisfies equation (10) becomes
the starting position of the seed.

fx >X (10)
M
If the initial seed satisfies Equation (10) then the extension
procedure is performed, otherwise a new randomly selected
sample area is required.
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The evolution of the seed is decided by comparing the
distance obtained from Equation (8) to the discriminator
distance. The evolution of the seed position has to satisfy
the following condition:

Ui G sqan@,wsa)n@wsdj,)1|é¢msqo an
0 i s SN,y >IN, N, >

The result “1” represents that the seed can extend toward
that direction, otherwise, the seed stops evolving.

The process is repeated recursively for each four neighbours
of the extended seeds. The process continues until all the
seeds stops extending (result “0” for condition (11)).

D. Detection of the maximum seed extension position and
shortest path generation (regardless obstacles)

This is an intermediary step of the path generation process.

Here we decide the new destination of the robot and its
temporary linear trajectory.

The possible driving region is given by the LDP based
seed extension algorithm. Each location of the driving
region represents a possible moving point for the robot. The
robot destination position must be a rteachable one;
therefore the area that the robot has to pass over when
driving to the destination must have an acceptable number
of driving region points inside.

Virtual Mass center of the Mobile Robot

Figure 3. Desired driving angle and Desired moving direction
based on the maximum extended seed position (1).
2 and 3 represents two other destination candidates.

The new temporary destination position for the robot is
chosen in the image highest area covered by the extended
seed. In Figure 3 are presented the chosen position (1) and
other two position competitors for the robot destination (2
and 3).

Having the destination position we can describe the
desired robot trajectory by connecting the destination
position and the virtual mass center (Figure 3 - yeilow dot).

The virtnal mass center stands for the robot position
representation within the image space. The position of the

virtual mass center in the image is computed by knowing
the camera position regarding the robot and the camera
focal distance.

—> Original path
— > New gencrated path ]
©  Virual Mass Center ¥

— — - Object area
Crilical Point

Robot width at the
object distance

Figure 4. Example of dynamic path generation

E. Dynamic path generation regarding obstacles shown
situation

When there are no obstacles in front of the mobile robot
the pathis generated very easy. The mobile robot can follow
a linear trajectory to the destination point. In this case the
trajectory is defined as a straight line between the virtaal
mass center of the mobile robot and the temporary
destination. However, when there are obstacles in the front
of the mobile robot that appear in the viewing range, the
path has to be changed to avoid collisions.

When we adjust the path of the mobile robot we have to
consider the errors that may appear in the objects detection
process. Therefore, we consider only the nearest obstacles
that have an acceptable size, to reduce as much as possible
the fake obstacle detections, generated by noise facts.

The projections of the objects in the image space are
represented as rectangles. To compensate the objects
detection errors, we resize the objects contours by using
information about the driving region.

Iets consider the points A(xy), B(xy)., C(xy) and
D(x,y) as the corners of the rectangle. Where, (x, )
represents positions in the image space. The rectangle
segments are: AB, BC, CD and DA (Figure 4). Only the BC,
CD and DA segments are directly related to the path
generation process. Therefore, we check only these
segments when we resize an object mapped area.

A vertical or horizontal segment S can be defined as:

S={I(x,y)|n<x<m,p<y<k} (12)
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Where, # and m are the starting and the ending x position of

the segment, p and £ are the starting and the ending y
position of the segment. The number of pixels covered by
the segment is m — #t + k - p. By using (12) we can define the
BC, CD and DA segments.

Each of these three segments is moved to the inner or outer
direction until they pass the occupancy condition. This
condition verifies the number of pixels covered by the
segment that represents locations of the driving region. The
segment that is covered over 80% by the extended seed
points has to move to the central direction of the object
rectangle area to reduce the occupancy. The segment that is
under 80% occupied has to move to the outer direction of
the rectangle. The 80% comes from the acceptable Gaussian
property.

We also- have to consider the mobile robot size. When we
represent the robot by his virtual mass center, we assume
that the robot has no spatial volume. This can be dangerous
when the obstacles are very close to the robot. To prevent
dangerous situations we resize the rectangles representing
objects to avoid collisions when the robot is passing very
close to the obstacle. We inflate the rectangle by moving
AD and BC segments to the outer direction with half of the
mobile width, projected in the image space at the object
distance (Figure 4).

After resizing the objects projections we update the path of
the mobile robot by searching a safe path to the destination.

A B A B

/
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Figure 5. Critical point detection
a) The path is intersecting the CD segment
b) The path is not intersecting the CD segment
¢) The path is intersecting the object area, but is not
intersecting the CD segment
First we need to find which segments are intersected by the
line constructed from the virtual mass center of the mobile
robot and the temporary destination. In Figure 4, BC and
CD are intersected by the original path that is generated
regardless of the obstacles existence. However, only the
intersection with the CD segment is relevant. If the path is
intersecting the rectangle, but is not intersecting the CD
segment then we consider that the mobile robot can safely
pass. Figure 5 shows three possible situations that may
appear: a) the path is intersecting the rectangle by passing
over the CD segment, b) the path is not intersecting the
object area and c) the path is intersecting the object area, but

1s not intersecting the CD segment, Therefore, we can test if
the current path is safe by finding the intersection point
between the path and the CD segment for each object, If the
intersection is between C(x,y) and D{x,y) points then we
have to find the critical point, otherwise the path remains
unchanged. The critical point represents the closest object
position that can be reached by the mobile robot.

If the path is crossing over the CD segment then the critical
point will be C(x,y) or Dfx,y). We choose the point that is
closest to the intersection point. This point is used to update
the current path.

If the temporary destination is placed inside an object
area then the current destination is considered to be the
detected critical point.

The path is updated step by step for each considered
object. We start updating the path by computing the critical
point for the nearest object and we continue checking the
intersections with the remaining objects. At each step we
consider the intersection of the current object with the Tatest
path. Objects are taken from the nearest to the farthest.

The final path is generated by connecting the robot
virtual mass center, critical points and the destination.

II. EXPERIMENT

The method presented in this paper was tested using an
outdoor image sequence (1000 images). The main aim of
the experiment was to check the path adaptation in the
obstacles shown situation. We used a highway scenario
because is a very dynamic environment,

For each frame a new temporary destination was
chosen and the path was updated with respect to the
detected obstacles. We consider only the obstacles nearby
the mobile robot. The maximum range for detecting
obstacles is strongly dependent on the stereo system.

Figure 6 presents a short image sequence (only the lefi
image) with the generated path for each image. When the
path is not intersecting an obstacle then the path remains
unchanged (strait line to the destination).

In Figure 7 first row we depict the road curvature for
the image sequence presented in Figure 6. The road
curvature is very important for a long range path generation.
If the road is not flat and we have no knowledge about the
road curvature then we cannot directly measure the distance
to a trajectory point. But if we generate a short distance path
we can assume that the road is flat (for the highway
scenario).

The second row in Figure 7 presents the driving direction
for the current frame. The driving direction is given by the
first segment of the detected path, The result looks like a
noise carrying signal because the position of the destination
is chosen using the extended seed and also the size of the
detected objects is not constant, The destination is placed in
an irregular position due to the characteristic of the seed
extension probability. To achieve a softer variation of the
driving direction we applied a Kalman filter on the
generated driving angle and on the destination position. The
value of the Kalman filter measurement error for the driving
angle is directly related to the detection errors of the first
object avoided by the current path. If the path ic a strait one
to the destination point then the measurement errors are
directly related to the process of destination choosing. The
final result is presented in the third row of Figure 7.
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Iv. CONCLUSION

We proposed a simple approach for mobile robot path
generation. Our approach combines stereovision with single
image processing. The path generation process has two
main phases: direct path generation and path updating to
avoid collisions. The accuracy of the generated paths can be
improved by using high quality stereovision equipment.

The method was tested using an outdoor image sequence
and the results are encouraging. Tests were shown that our
approach can be used in structured and unstructured
environments.
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Figure 6. Results of the dynamic path generation
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Figure 7. Simulated path generation for mobile robot autonomous
driving



