Automatic 3D Modeling Based on Soft Computing Techniques
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Abstract— 3D reconstruction plays a very important role in
computer vision. The determination of the 3D model from
multiple images is of key importance. In this paper a 3D
reconstruction algorithm is introduced, which is capable to
determine the 3D model without any external intervention.

I. INTRODUCTION

3D reconstruction from images is a common issue of
several research domains. In recent time the interest in 3D
models has dramatically increased [1][2]. More and more
applications are using computer generated models. The
main difficulty lies with the model acquisition. Although,
more tools are at hand to ease the generation of models, it is
still a time consuming and expensive process. In many
cases models of existing scenes or objects are desired.
Traditional solutions include the use of stereo rigs, laser
range scanners and other 3D digitizing devices. These
devices are often very expensive, require careful handling
and complex calibration procedures.

Creating photorealistic 3D models of a scene from
multiple photographs is a fundamental problem in computer
vision and in image based modeling. The emphasis for most
computer vision algorithms is on automatic reconstruction
of the scene with little or no user interaction [3].

In this work an alternative approach is proposed which
avoids most of the problems mentioned above. The object
which has to be modeled is recorded from different
viewpoints by a camera. The relative position and
orientation of the camera and its calibration parameters will
automatically be retrieved from the image data. In general,
3D reconstruction requires camera calibration which is
performed by checking the correspondence between 3D
geometry in world coordinates and 2D geometry in image
coordinates. For the recomstruction we will use only the
edge points of the reconstruction object. Using this
alternative, the processing time can be significantly
decreased.

The paper is organized as follows: Section I shows how to
detect the edges of objects using a fuzzy based filter,
Section II summarizes the basics of epipolar geometry,

Section III is devoted to the estimation of the fundamental
matrix, Section IV describes how to find the corresponding
image points, Section V shows how to cstimate the
perspective projection matrix from image data, and finally,
Section VI and Section VII report experimental results and
conclusions.

II. NOISE ELIMINATION AND ESTIMATION OF THE
OBJECT EDGES

A major task in the field of digital processing of
measurement signals is to extract information from sensor
data corrupted by noise [4][5]. For this purpose we will use
a special fuzzy system characterized by an IF-THEN-ELSE
structure and a specific inference mechanism. Different
noisc statistics can be addressed by adopting different
combinations of fuzzy sets and rules [4][5].

Let x(r) be the pixel luminance at location r=[r;,7-] in the
noisy image where 7, is the horizontal and r», the vertical
coordinate of the pixel. Let N be the set of eight
neighboring pixels (see Fig. 1a). The input variables of the
fuzzy filter are the amplitude differences defined by:

ij :xj—xg,j=1,...,8 (D

where the x;, j=I,...,8 values are the neighboring pixels of
the actually processed pixel x, (see Fig. 1a).

Let yy be the luminance of the pixel having the same
position as xp in the output signal.
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Fig. la: The neighboring pixels of the actually
processed pixel %,
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Fig. 2: Membership function myp. Parameters a and b are
appropriale constant values

This value is determined by the following relationship:
Yo = X +AY 2)

where Ay is determined thereinafter (see eq. (5)). Let the
rulebase deal with the pixel patterns Ny...., Ny (sec Fig. 1b.)

The value yy can be calculated, as follows [4]:

A= W{MN{mLP(ij) 3 e, },i = ‘1,...,9} (3)
A = MAXMINY (A )i x, € N fi=1,..9) @)

Ay =(L-1)AA

(5)
Yo =X+ Ay
where Ad=4-i", myp and myy correspond to the membership
functions and myp(u)=mof-1) (see Fig. 2.). The filter is
recursively applied to the input data.

Edge Detecting

Edge detection in an image is a very important step for a
complete image understanding system. In fact, edges
correspond to object boundaries and are therefore useful
inputs for 3D reconstruction algorithms. The proposed
fuzzy based edge detection [5] can very advantageously be
used for this purpose.

Let x;; be the pixel luminance at location [4/] in the input
image. Let us consider the group of neighboring pixels
which belong to a 3x3 window centered on x;;

The output of the edge detector is yielded by the following
equation [3]:

2, = (L =DMAX {m,  (Ay) ), (A,

Ay, = 1%‘.;-1

where z;; is the pixel luminance in the output image and s 4
is the used membership function (see Fig. 2). Pixels x.,,
and x;;., are the luminance values of the left and the upper
neighbor of the pixel at location {i].

The fuzzy based technique compared to the classical
methods provided better results with less (very small)
processing time. Figs. 4-6 show an example for the filtering
and cdge detection results. In Fig. 4 the original photo
corrupted by noise can be seen, Fig. 5 presents the filtered
image of Fig. 4, while in Fig. 5 the results of the edge
detection can be followed.
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Fig. 3: Membership function my . Parameters a and b are
appropriate constant values

Fig. 5: Fuzzy-filtered image of the photo in Fig. 4
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Fig. 6: Image of the photo in Fig, 5 after fuzzy based edge detection
. EPIPOLAR GEOMETRY

Consider the case of two perspective images of a scene
illustrated by Fig. 7. The 3D point M is projected to point
m, in the left image and m, in the right one. Let C; and C,
be the centers of projection of the left and right cameras,
respectively.

Points my in the first image and m; in the second image are
the imaged points of the point M of the 3D space. Points e,
and e, are the so-called epipoles, and they are the
intersections of the line joining the two cameras C; and C,
and the two image planes. The plane formed by the three
points [C;MC,] is called epipolar plane. The lines 1, and
Iz are called epipolar lines and are formed when the
epipoles and image points are joined, Point m;, is
constrained to lic on the epipolar line 1,; of point my. This
is called epipolar conmstraint. Epipolar line Il is the
intersection of the epipolar plane mentioned above with the
second image plane Image2. This means that image point
m;y can correspond to any 3D point on the line [C;M] and
that the projection of {C;M] in the second image Image2 is
the line Ins. All epipolar lines of the points in the first image
pass through the epipole e; and form thus a pencil of planes
containing the baseline [C;C;]. The above definitions are
symmetric, in a way such that the point of m; must lie on
the epipolar line I, of point m;.

An important practical application of epipolar geometry is
to aid the search for corresponding points, reducing it from
the entire second image to a single epipolar line. The
epipolar geometry can easily be found from a few point
correspondence [7][8].

Let my = (x, y, z)’ be the homogeneous coordinates of a
point in the first image and e; = (1, v, w) be the coordinates
of the epipole of the second camera in the first image, The
epipolar line through m; and e; is represented by the vector

L, =(a,b,¢) =m, xe, N

The mapping m;—l; is linear and can be represented by a
3x3 rank 2 matrix C:
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Fig. 7: lllustration of the epipolar geometry
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The mapping of epipolar line 1,; from Imagel to the
corresponding epipolar line Iy, in Image2 is a collineation
defined on the 1D pencil of lines through e, in Imagel. Let
A be one such collineation, ie. ly; = A ;. Since A has
eight degrees of freedom and we only have five constraints,
it is not fully determined, Nevertheless, the matrix F = AC
is fully determined [7][8]. F is called fundamental matrix.
We get

Iy =ACm, =Fm, ®

It is a fact that all epipolar lines in the second image pass
through e, for all transferred Iy,

el =0, (10)

F defines a bilinear constraint between the coordinates of
the corresponding image peints. If m, is the point in the
second image corresponding to my, it must lie on the
epipolar line I,

lyy =Fm, (11)
and hence

mil,, =0, (12)
The epipolar constraint can therefore be written as
m]Fm, =0 (13)

Linear Solution for the Fundamental Matrix

Each point match gives rise to one linear equation in the
unknown entries of matrix F. The coefficients of this
equation can easily be written in terms of the known
coordinates of my and m, Specifically, the equation
corresponding to a pair of points m4 and m, will be
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where the coordinates of m; and m, are (v, v. 1) and
(x"2".1Y, respectively. Combining the equations obtained for
each match gives a linear system that can be writien as Aw
= (), where w is a vector containing the 9 cocfficients of F
and each row of A is built of the coordinates m, and m, of a
single match. Since F is defined only up to an overall scale
factor. we can restrict the solution for w to have norm 1. We
usually have more than the minimum number (8) of points,
but these are perturbed by noise so we will look for a least
squares solution [8]: ‘

min“A\w"2
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As "AW“2 =w’ ATAw, we have to find the eigenvector

associated with the smallest eigenvalue of the 9x9
symmetric, positive semidefinite normal matrix A'A.
However, this formulation does not enforce the rank
constraint, so a second step must be added to the
computation to project the solution F onto the rank 2
subspace. This can be done by taking the Singular Value
Decomposition (SVD) of matrix F and setting the smallest
singular value to zero. Basically, SVD decomposes any real
valued martrix F in the form of

F=QDR (16)
where D is diagonal and Q and R are orthogonal matrices.
Setting the smallest diagonal element of D to 0 and
reconstituting gives the desired result.

IV. IMAGE POINT MATCHING

First the vertex correspondences are determined which is
followed by the determination of the edge correspondences.
This latter can be based on the comparison of a well-defined
small region around the analyzed image point with the
corresponding regions around each of the candidate image
points in the other image. For this purpose we need several
images taken from different camera positions. If the angle
between the camera positions is relatively small then the
corresponding points can be calculated automatically with
high reliability in each image. As we had seen in the
previous section the searching procedure can be reduced to
1D (along a line) with the help of the determined
corresponding epipolar line. First we have to find the most
characteristic image points. These points are the corners of
the analyzed object. Corners can be effectively detected
with the help of a fuzzy based corner detector [9]. For each
detected comner we have to determine the corresponding
epipolar line. Then we assign the comer points of this line.
Thereinafter the fuzzy measure of the differences of the

environment of the so gotten points are minimized by fuzzy
based searching algorithm. The same procedure is applied
to edge points.

V. ESTIMATION OF THE PERSPECTIVE PROJECTION
MATRIX

There exists a collineation, which maps the projective
space to the camera’s retinal plane: 3D to 2D. The
coordinates of a 3D point M = [My, My, M}" (determined in
an Euclidean world coordinate system) and the retinal
image coordinates m = [m,, fn_,]r (see Fig. 8.) are related by
the following equation:

) M.
mW| [a b ¢ d| 71
: M,
mW|=\le f g h Iy (17)
W i ko1l

where W is a scale factor, m = [m, m, I}T and M = [M,
My, My, l]T are the homogeneous coordinates of points m
and M, and P is a 3 x 4 matrix representing the collineation
3D to 2D. One parameter of P can be fixed (/ = 1). P is
called the perspective projection matrix. Values a, b, ¢, d. e,
f g ki, Jj, k are the elements of the projection iatrix P. The
optical axis passes through the center of projection (camera)
C and is orthogonal to the retinal plane. The focal length /;
of the camera is also shown, which is the distance between
the center of projection and the retinal plane. Even if only
the perspective projection matrix P is available, it is
possible to recover the coordinates of the optical center or
camera [7]. It is clear that

W =iM, + jMy +kM; +1 (18)
From equation (17) we can compute the coordinates of
point m (m,, m,), as follows:

_aM +bMy +cM, +d

19
n, = (19}
l.:eM‘,{-'r]’M,,+gMz~l-1h (20)
: W
Mea+ Myb+ Myc+d+0e+0f+0g+ 21)
+0h=Mymi-Mym_ j—M,mbk=m_ “
0a+0b+0c+0d+Me+ M, f+ M. g+ 5
(22)

th-Mmi-M m_j—Mmk=m,

All together we have eleven unknowns — these are the
elements of the projection matrix that means that we need
six points to determine the projection matrix.,
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Fig. 8: Perspective projection - illustration of points M=[.Y,}.Z] and 1ts
projection m=[x,1] in the retinal plane R.

After substitutions and equivalent transformations we get
the following equations and matrices:
AQ=B (23)

where matrix A and vectors Q and B are described
thereinafter. See eqgs. (23), (26), (27), (28), (29).

T T
A"AQ=A'B (24)
From eq. (23) the projection matrix can be obtained:

T A=l 4T n
Q=(A"A) A B (25)
g
M, My My 10 0 0 0 - My —m M, -m M,
i 0 0 G0 My M, M, o o-m M, -om M, my, M -
A :
My My My | 0 0 00— ML M M
3 10 0 00 M My My b em M em My —m M|
(26)

The first two lines of matrix A correspond to points M, and
m,, the second two lines correspond to points M, and my,
ctc. With the help of these points we can compute the
elements of the projection matrix P:

a b ¢ d

P=le [ g & (27}
ij ok o1]

Q=la b e d e f g h i j kI (28)

m,, m, Jr (29)

The clements of vector B are the coordinates of points m,,
where i=1..n

B:lmr my, My M,

VI. EXAMPLE

In this section a simple example is presented to illustrate the
introduced modeling procedure. Fig. 9a and Fig. 9b show
the input images which are corrupted by noise. Images
represented by Figs. 10a and 10b arc the filtered ones of the
above mentioned input images. Fig. 1la and Fig. 11b
represent some corresponding points as example of the
matching algorithm’s functionality, Fig 12a and 12b show
the resuits after the edge detection and finally, Fig 13
illustrates the resulted 3D model.

VII. CONCLUSIONS

This paper introduces a method for 3D model
reconstruction from images taken from different camera
positions. The method applies fuzzy filtering, fuzzy edge
detection and a new method based on the recent results of
epipolar geometry. With the help of this technique 3D
models can be produced without any external (human)
mtervention, thus it can be advantageous in many 3D
applications and in computer vision.

Fig 9a. : The first input picture from camera position C1

Fig 9b. : The second input picture from camera position C2

Fig 10a : Picture 9a after fillering



Fig ! ia: An example of some caleulated
maiching peints (camera position C1)

Fig 11b An example of some caleulated
malching points (camera position C2)

Fig 12a: The picture represented by Fig 10a after edge detection
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Fig 12b: The picturs represented by Fig 10b after edge detection

g 13,

The resulted 3D object model from a different camera position

ACKNOWLEDGMENT

This work was sponsored by the Hungarian Fund for
Scientific Rescarch (OTKA T 035190) and the Hungarian-
Portugese Intergovern. S&T Cooperation Programme (P-
24/03).

{11

{3]

[4]

(6]

[7]

(8]

(9]

REFERENCES

C. Taylor, P. Debevec and J. Malik, “Reconstructing
Polyhedral Models of  Architectural Scenes from
Photographs,” Computer Vision - ECCV'96, Lecture
Notes in Computer Science, Vol. 1063, Vel II, pp 659-
668, 1996.

R. Hartley. “Fuclidean reconstruction  from
uncalibrated views,” in : JL. Mundy, A. Zisscrman,
and D. Forsyth (eds.), Applications of Invariance in
Computer Vision, Lecture Notes in Coemputer Science,
Vol. 825, Springer-Verlag, pp. 237-256, 1994.

R. Hartley and A. Zisserman. “Multiple View Geometry
in Computer Vision,” Cambridge University Press,
2000.

Russo, F., “Fuzzy Filtering of Noisy Sensor Data,” In
Proc. of the IEEE Instrumentation and Measurement
Technology Conference, Brussels, Beigium, 4-6 June
1996, pp. 1281-1285.

Russo, F., “Recent Advances in Fuzsy Technigques for
Image Enhancement,” J[EEE  Transactions on
Instrumentation and Measurement, Vol. 47, No. 6, Dec.
1698, pp. 1428-1434.

Russo, F., “Edge Detection in Noisy Images Using
Fuzzy  Reasoning,” JEEE  Transactions  on

Instrumentation and Measurement, Vol. 47, No. 5, Oct.
1998, pp. 1102-1105.

Q. Faugeras, “What can be seen in three dimensions
with an uncalibrated stereo rig”, Computer Vision -
ECCV'92, Lecture Notes in Computer Science,
Vol. 588, Springer-Verlag, pp. 563578, 1992.
R.Hartley. ”In defence of the 8-point algorithm,”
In Proc. of the 3th International Conference on
Computer Vision, Cambridge, Massachusetts. USA, pp.
1064-1070, June 1993.

Révid, A., AR, Varkonyi-Kéczy, "Corner Detection in
Digital Images Using Fuzzy Reasoning,” submitted to
2" JEEE Int. Conf. on Computational Cybernetics,
Angust 30-Sep. 1, 2004 Vienna, Austria.



