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Abstract — This paper decsribes the design and
implementation concepts of a robust 3D vision system is
under development. This system is based om a robust
geometric algorithm which is able to determine the relative
position of two cameras based on 2D images. The cameras
need not be pin-hole type ones, they can have real optics, The
pincushion effect of the optics is determined with a separate
algorithm. The result of this can be used to correct the
distorted input images, in order to obtain more precise
output. The computational time is linear with the number of
points, and enables real time processing on nowadays DSPs.
The algorithm can be used with multiple cameras, but it is
also able to operate with a single, moving and autonomously
zooming camera.

I. INTRODUCTION

The most important part of this system is the inner part,
which determines the transformation matrix between the
objects on image A and B. The features of this part
(geometrical algorithm in the following) determine the
possible features of the whole system. This part has
already been implemented, and is under testing. Another
level will be responsible to handle the complexity of the
environment, in which the cameras operate. The basic
methods are declared, and waiting for the implementation.
A post-processing algorithm is also implemented which
can fit curves and curved surfaces to unsorted and unlinked
3D points. Its tésting was done with curves only The
algorithms handling the effects of the real optics on the
cameras are under implementation. This article will focus
more on this part. The development of a demonstrative
application is simultaneously going on. This would be able
to track the fine movements of the user’s head. These data
will be used in a Virtual Reality application. Currently the
head-mounted markers (HW) are under comstruction,
which will be able to be used either in a helmet or in a
window style VR installation.

II. THE GEOMETRICAL ALGORITHM

The algorithm needs paired two-dimensional points
whose comrespondence has to be determined during
preprocessing. The exact spatial locations of these points
and their precisions are also outputs of the method. The
basic idea of this method (as for the simpler similar ones)
was given by the linear cormrespondence of the two-
dimensional projection of the points’ locations and
velocities. In the range of practical cases, the precision’s
degradation is linear with the amplitude of the noise
distorting the input data.

The basic problem can be viewed in two different ways:
Either we have one static object and two cameras (or one

static object and one moving camera), or we have one
static camera and a moving object. The mathematical
deduction is based on the first aspect, but the case of
multiple objects requires the second way of thinking. First
we developed a simplified linearized model, which in the
second phase was changed to an exact nonlinear model. A
similar model can be found in [2, Chapter 8].

A. Specification

The input data consist of pair of two-dimensional points;
these are the projected location of the real 3D points in the
first and in the second image (image A and B in the
following). This information can be provided by a
preprocessing algorithm, or manually by a user of a 3D
modeling program. The images can be made with real
optics, thus the method is precise not only for the case of
pin-hole cameras. [1, Chapter 3] In the case of enough
input data (eight point-pairs) which belong to one rigid
object, the method is able to determine the zoom of the
optics in the two pictures, the 3D transformation between
the two images (this can be interpreted as motion of either
the camera or the object), the spatial location of the points
and the precision of these. It is necessary to see, that the
model of the object is undefined for a linear scaling, while
inflated models can produce the same pictures on inflated
cameras. Thus, an object with known size is required on
the picture for concrete measurements. The post-
processing determines the pincushion effect of the optics.
A robust extension was developed which can handle noisy
input data too. The error of the output is proportional to the
amplitude of the noise added to the input.

Fig. 1. The basic setup of the problem

In the beginning phase, simpler algorithms have also
been developed, which do require less than eight correctly
paired 2D points per rigid object, but they use linearized
models of rotation and of perspective effects. These are
currently not under our interest.
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The geometrical algorithm consists of two parts, the first
one determines the direction of the translation, and the
second one calculates the zoom values. The parameters of
rotation can be easily determined after this.

In the first part, a feature vector is calculated for each
input point-pair. The spatial properties of these vectors can
be used for various purposes, for example to calculate the
direction of translation, to make the algorithm robust
against noise and also to determine optical distortion,

The formulas of the deduction show symmetry between
the two images. For noiseless and undistorted 2D data, we
get the same result (both theoretically and practically) if
we do an A-B and a B-A measurement based on image A
and image B. In general cases (having noise or distortion),
the two different, but similar solutions can be averaged in
order to have better approximation of the results.

The second part consists of the solution of a nonlinear
equation system. The result can be determined by
successive expression and substitution of unknowns. The
nonlinear system consists of four trilinear equations, which
can be converted to a 12th degree polynomial. Fortunately,
beautiful simplifications occur and the final equation
becomes to a simple second degree one.

The combined algorithm is able to handle the unknown
zoom of both of the optics. This was a primary expectation
against the system.

There are situations, in which the axis of rotation and the
vector of translation are in such a relation to the optical (2)
axes, in which the equations result infinite solutions, and
the required quantities can not be determined. The upper
levels can easily handle these exceptional singular cases.

B. The robust extension and its performance

The algorithm was first tested with simulated input,
which corresponds to perfect geometrical conditions. In
this simulated case, the output contained the correct result.
In the practice, there adds noise to the input in all cases,
and the program should work with noisy data too. To solve
this problem, three different versions has been
implemented and tested. The best one leads to an algebraic
eigenvalue problem, which gives three different solutions.
We must choose from them with the verification of the
output. This means, the resulting 3D locations are
projected to produce 2D images similar to the input data.

TABLE I
THE PERFORMANCE OF THE ROBUST EXTENSIONS,
SIMULATION RESULTS
Input noise, Same Precision of output, relative to image
relative to noise size [+1;-1]
image size level in S
[+1;-1] SVHS | Eigcnvalue 2 | 3
pixels problem
+0).2 +40 0.33
+0.1 +20 0.168
+0.05 +10 0.086
+0.03 +6 0.053
+0.01 +2 0.0191
+(0.005 +1 0.0097
+0.0025 +0.5 0.0052
+0.001 +0.2 0.0019 X
+0.0001 +0.02 0.00020 0.0042 0.018
Grey data: can not be used in practice due to the too big
CITOTS

The sum of squared differences between the resulting
and original 2D locations shows the error of the actually
verified solution. The other two versions lead only to
single solutions. Five different solutions have to be
evaluated. After this we can select the most accurate one,
In all cases, the first version gave the most precise rcsults.
(See Table 1)

Because the algorithm does not require calibrated
cameras, we can use archive image or video data for
processing, and it is also possible to identify the type of the
optics.

The obscurity (uncertainity) of the output 3D locations
can easily be determined. Currently, each 2D input point
contains an additional attribute which express the obscurity
of its location (typically the pixel radius, or, on blunt
images, the wavelength of the highest frequency). This
data is used to determine the 3D location which minimizes
the least square error after back-projection to the projective
planes. When we construct two rays which are going
through the two optical center of the cameras (A or B), and
also through the 2D location of the same point’s image on
the proper projective plane (A or B, respectively), these
rays would typically not intersect each other. The location
which results the least error would be halfway between
them, if the cameras are equally distant from this location,
the aperture angles of the two cameras are identical, and
the obscurity of each 2D point is the same. In general
cases, these paramcters (distance, zoom, 2D obscurity)
have to be taken into account to determine the location
with the highest probability. The curent implementation
works this way.

Currently, we do not care about the obscurity of the
calculated transformations because their dependence on the
input is very cormplex. In the case of successive
measurements, the reciprocal of the 3D obscurity can be
collected (by simple addition) to a 3*3 matrix. Thus, the
more measurements we did, the less obscurity of 3D
locations we have. In a succeeding step, we can update
(and refine) the calculated camera positions based on the
more precise 3D location of the points.

C. Test results performed on real input

Fig. 2. Two images of the same skeleton (lines between points are shown
only to help identifying the correspondence)
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Fig. 3. The location of coupled 2D point pairs (lines belween points are
shown only to help identifying the correspondence).

The first real-life test was done on three images of the
same human skeleton. Let us call these pictures A, B and C
respectively. In the following, we focus on the
measurement A-B. The pictures (Fig. 2) were taken with a
mobile phone, whose camera has high aperture angle, and
therefore a relatively high radial distortion (Fig. 5). Several
corresponding points on these images were coupled
manually, in the actual phase (Fig. 3).

Then, the 2D coordinates of these points were feed to
the MATLAB implementation of the algorithm, and the
output 3D points were exported to a 3D editor (Fig. 4).
When the 3D locations were projected back to 2D the
mean square of the differences to the original inputs turned
out to be around the size of 1 pixel.

Fig. 4. Axcnometric views of the resulted 3D locations

ITI. OPTICAL DISTORSION

A. Handling the pincushion effect of the optics

o i A £ BAREERLILS
e e ey re s et
FEE IO R b
L * A B,
rosdiitsata it otdi st il b il
_ai R AR m AR R AR R AR LA 2R U n} ? ()
i e T T
i3 ::-"‘"fgi%:: ,g‘a“. it
ETE 33 43 bR epy
SivedaraNEe Hereies il
GAFRES A B ARE FARNET R
Hhondd Ehowd HNHE ;'n:a\a B
E i:l;:%*r;. ® la;j;ﬁ%\:im@;gan

%49 ;
R sshindiey
-2, g X A4 44
a‘::-:ugwitp.t‘ ‘*4 ﬂ’;é &~§ A\
3 Eo bt dacl oEnn
E; &-1@&4‘.!-- MR R
FEAEA SR A b ;5 f‘x«x‘a‘{
EEAK KR ks . -p,-La A
FEERTEIRBNE N ¥ Ee S P &Y
¥ 4--::1193% R wi’it%-'&' £k
e rEde g raciy
~; anﬂ&‘!tx} ;‘g;;id‘u{f&
A iasing PR
B ST
A ereivet :d"» HEHEAAE gmf =]
R et gt d ]
sediiilie e
PEREiEeAstaa sl pés 238 0
rRah AT EERELNL a5 LA ot

ek E

Sanen
3
bt
5
bt

Fad

e
3
e

Fig. 5. Photograph of an equally spaced grid with real camera. This image
can be used to verify the determined distortion function.

In the initial phase two methods were selected to handle
this problem:

Method A divides the 2D point's on image A into
equally sized clusters based on their distance from the
image's center. After this, the normal geometric algorithm
determines the zoom for the different clusters. In the case
of five clusters, a cubic distortion function can be
computed by LS method.

Method B assumes that the distortion of the optics has
the same effect to the geometric algorithm as the effect of
random noise. Thus, the preliminary calculation would
give almost correct transformation matrices. After knowing
the location of the two cameras, one can determine, which
distortion gives the least error of the back-projected 3D
points,

Method B uses a model which assumes that the real and
the projected positions of a point satisfy that if both 2D
positions are expressed in polar coordinates (,r) then (f)
is not affected by the lens in the optics.

The radius is distorted in the following manner:

rprojt:clcd = f.(l‘original) 3 ( 1)

where f needs to be strictly monotonic, and thus
invertable, which is always true in the practice. The model

. — = =
}arfgir.-a{_‘ g(rprojecled) 7 f (rpmjec:ed) =

= polymomial (¥p,giecied) (2)
is the basis of this post processing algorithm.

In the following we deduct the determination of the
distortion parameters. This method works properly if the
transformation between the camera A and B is known.

Let p; be the 3D location of the actually examined point.
For simplicity, we will neglect the i index for a moment.
Denote p, and pp the projected locations of p on the

projective planes of the cameras A and B, respectively,
€ ,and € are the center of the perspective planes.

Fig, 6. Notations used in the derivation of distortion parameters.

Let dand b (with unit length) be the direction of the
rays coming from the optical centers of the camera A and
B, and going through p, and pp respectively. In the

general case, these rays will be skew lines. Let 4 be the
shortest section between these rays (the normal

transversal), and d be its dircetion (with unit length). Let
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_»I-“, he the closest point of ray A to ray B. and E", be the
closest point of ray B to ray A, Thus d= Ed “E.J . Letus
note with

Fy=ps -Csand Fg=pp —Cp (3)
the positions of the projected points relative to the image’s

center. These vectors are the radii of the images of point
7. For the unit length directions of these radii we get:

Fo=Fi Pl and 7y =7 [

If the location of p, is artificially changed in the

G

direction of f}, with the amount of Ar,, then the

displacement of Ed will be the following:

Ty T ATz (5)
Similarly, for the displacement of Ed we get:
Pp=Arp Fp-Zp, (6)

where z, and z, notes the z coordinate of p in the

coordinate frame of the camera A and B, respectively.

e W
. - e

[
/ e

Fig. 7. Details used in the derivation

Displacing Zd with ¥, and B, with ¥, these points
will not be the closest ones. Let Z; and E‘; denote the
closest points in all instance. For small Ay, and Ary
values, the direction of d {c?= :Z; —E’;.) will not change,
since the directions @ and b are quasi constant. The
components of ¥, and ¥, in the d direction (let these be

called 7, 4 and ¥4 _4) will be the displacements of A,

and l?{; in the same dircction:

(N

Vy g=<V, 4.d>d and Vg g=<Vvy 4. d>d

(8)

d=dy+v, 4-Vg 4-

In the equation above, every vector’s direction is d, so this
equation is true for the signed length of these vectors:

d:d(j ’}*1"1_‘{ WVB__:I (9)
Where
d=<d.d>, d, :<£?”,f?> and

I~

Vg =Sy ::"a; >, vp g =<Vy y > (10)
The deduction is continued in the following for the casc
when we want to minimalize the spatial distance between
the rays A and B. This gives simpler formulas than the
minimalization of the 2D error.

The model of distortion will be used in the sequel. The
model stays that the required correction of any point in the
radial direction is given by a polynomial of the original
radius:

r_'? 1> and

Ar, =<E_{.[1 r, rj

Ay =<Cp,[l 1y rp 131> an

where C, and Cp are the cofactors of the correction

polynomials, which were chosen the grade 3 for the
following. We get:
— Vg
d=dg+<Cylryri rils =2
Ar,
i LV
< Cp.llrg rd r3]>—==2 (12)
Ty
where
v g fArg =< gy d> and
vy o fBrg =<Fyzg, d>. (13)
Grouping all unknown parameterss to the row veclorX :
z-[€, T, (14)
and noting
_ Vi_d Ve_d
my =g g ril—=— —[l7g g 73] = (15)
4 B
the equation simplifyes to:
e =T

d=dy+tm, X (16)
Now we take care again of the index i:
d =dy ; +m, X" (17)

is to be minimalized for all i.
Collecting d, -5 to D, the dy i-s 10 D,, and the m,-

rows to the matrix M , we derive at a simple Least-Square
(1.S) problem:

IDG +M %"
If we would like to minimize the 2D error during the
verification instead of the 3D error (skew), this will result
in the addition of weighting factors to d;.d, ;and mi,.

is to be minimalized. (18)

This does not effect the behaviour of (18). The more
complex problem which handle the effect of the zoom
values and the 2D obscurity results also inan LS problem.
The resulting matrix equation is poorly conditioned, but
gives proper results.

<
[o7e]



B. Implementation results

Method B has been implemented. It is working perfectly
on synthetic distortion, if the preliminary determined
transformations are the simulated ones (Fig. &).
Unfortunately, the effect of distortion is not a white noise
process, and the geometrical algorithm  finds
transformation and zoom  values which result
approximately one fifth of the error after verification, what
we would get by using the original transformations. This
means that the effect of radial distortion is not nearly
'perpendicular’ to every effect of a combined change in
zoom and camera location. The running results show, that
in some cases, the algorithms find distortion parameters,
which are further from the simulated omes than the
undistorted (linear) pin-hole model. (Fig. 9) Thus Method
B can be used omnly with cameras having calibrated
locations, for example in stereo vision systems.
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Fig. 8. The simulated (dots) and determined (solid curve) distortions if the
transformaltions are known
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Fig. 9. The simulated (dots) and determined (solid curve) distortions if the
transformations are calculated from 2D data

C. Possible solutions to the emerging problems

Currently several methods has been sketched to help
handling this problem.

The presence of radial distortion raises the total 2D
error, and the difference between the 3D points resulted by
the measurements AB and BA. (The term ‘measurement
XY’ means that we run the algorithm with the first picture
to be image X and the second to be image Y.) One could
numerically differentiate these errors respect to a distortion

function either on image A or on image B. It will be very
interesting to test or deduct the effect of orthogonality of
the basic distortion functions.

Instead of differentiating the total 2D error, we can
focus on the requirements against the point-pairs’ feature
vectors (these vectors should lie in the same hyperplane).
We can deduct any basic distortion function’s effect (or its
cofactor’s) to these requirements. This results to a very
complex matrix eigenvalue problem, but we hope in the
practical cases this can be solved.

Method A should be implemented and tested also, but it
has stronger limitations than the other methods, if we have
few points on the image, or to much objects on the image.

All methods handling this problem can be iterated: first
we should determine the distortions, apply the inverse of
this to the input, and repeat these steps.

IV. FUTURE DEVELOPMENT

A. Problems waiting for implementation

For several occurring problems, we have already worked
out algorithms, which will be implemented in the near
future. These problems are:

1) The handling preliminary knowledge: For example,
information, that the zoom (and thus the radial distortion)
is constant, or if we have two or more cameras connected
stiffly to each other, then we know that the transformation
between them is not changing. This method is based on the
gradient of the verification error respect to the parameters
of the cameras (including location),

2) The identification of points belonging to differently
moving objects.

3) The identification of point-pairs which come from
false pairing.

4) The combination of successive measurements (This
can be handled also as preliminary information.).

B. Possible continuation of the development

The case of flexible bodies: If two spatial
transformations (object movements) differ only in an axial
rotation or prismatic translation, and this relation holds in
the previous time instances also, than the model of the two
rigid bodies can be linked, showing this relation. The
geometry of industrial robots [3, Chapter 1] can be
determined without prior information. Portions of flexible
structures (for example bending branches of trees) can be
linked in this manner.

Fig. 10. Sequential processing of images.
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The possibility of iterative refinement: If several images
are processed (as an image sequence) it is possible to
refine the results. Given images A, B, C, if the
correspondence between the points of A, B and that of
between B, C could be easily determined due to small
movements, then the (ransformation can also be
determined. If the spatial locations of the points are also
known, then the correspondence between images A and C
can be easily determined. The algorithm can be run with
input images A and C, which measurement has twice as
great basis distance as the previous two. The precision in
the direction z can be reduced to the half.

This process can be applied to the sequence A, B, C, D,
and E. After running measurement C-E, one can make a
run for A and E. There is also an other effect, due to the
fact that improving the precision of the locations improves
the element of the matrices describing the spatial
transformations. This refines the location of the points.
This can be repeated until infinity, but the convergence to
the exact values has to be analyzed mathematically.

V. CONCLUSIONS

We presented the main design and implementation steps
of a three-dimensional perspective vision system, which
differs from the commonly used ones by the ability to
handle varying zoom, real optics and by the way of
handling noisy inputs. We demonstrated the properties and
test results of the most important parts, the algorithms
handling the 2D-3D transformation and the optical
distortion. The properties of these parts fundamentally
determine the properties of the whole system.

The future research will be done on the further workout
on proper pre- and post processing algorithms. Further aim
is to develop such a collection of image processing
routines, which can automatically construct the partial or
full 3D model of the environment.
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