A Meta-Classifier Architecture for Real-Time Pattern Classification

Mihai R. Jalobeanu
Computer Science Department*
Technical University of Cluj Napoca
Baritiu 26, Cluj-Napoca, 400 020
Romania
mihaijal@hotmail.com

Abstract - We consider the problem of using classifier
ensembles for real-time pattern recognition and propose a
speed-optimized meta-classifier architecture that adapts to
time constraints by trading some classification accuracy over
speed when required. We show that, even when making such
a trade-off, the propesed meta-classifier can perform
significantly better than any of the classifiers in the ensemble.
A set of promising experimental results is also presented.

1. INTRODUCTION

The use of multiple classifiers to improve classification
performance has been a fairly common research topic in
the pattern recognition field for some time now [1] and a
large number of combination methods have been proposed.
Most of the previous work has been focused on static,
trainable or data-dependent meta-classifiers (combiners)
that perform an a posteriori fusion of the classification
results produced by the individual classifiers [2, 3]. Some
methods for a priori dynamic classifier selection have also
been proposed. These are usually based on estimating the
classifier performance in the neighborhood of the feature
vector being classified [3, 4, 5].

Both approaches mentioned above can involve a
significant computational effort in any non-trivial pattern
classification scenario. In the combiner case, each
classifier has to be executed first before the meta-classifier
can decide on the final answer. In the dynamic selection
case, the relevant neighborhood of the test vector must be
computed and the most competent classifier in that vicinity
must be determined. This means that neither approach is
particularly well suited to be used in time-critical pattern
recognition scenarios.

In this paper we propose a speed-optimized meta-
classifier that can scale down its computing requirements
under time pressure while still producing good
classification results. The proposed architecture would be
particularly useful in real-time pattern recognition systems
like the ones employed in autonomous robots, where
taking a reasonable decision fast is, in some cases, more
desirable than spending a lot of time attempting to find the
best solution,

1. THE PIPELINE MODEL

Most pattern recognition systems serialize the execution
of the classification stage behind the feature extraction
stage. In other words, classification is a distinct step that
starts only after all the features have been extracted.
Moreover, when classifier ensembles are used, the meta-
classifier is usually serialized behind all classifiers in the
ensemble. This means that the time 7' it takes to classify a
pattern — the reaction fime - is: b

max(Ty) +max(Ty) S T < 3 Tp+ 3 Ty, (1)
i j

where T is the execution time of the feature extractor F,
and 7¢; is the execution time of the classifier C;. How close
T is to one boundary or the other depends on the level of
parallelism of the system.

We propose an alternative architecture (Fig. 1) called
classification pipeline, which attempts to improve the
reaction time of the system while maintaining good
classification accuracy.

Int this model, a set of feature extraction modules FEM,
potentially running in parallel, produce a partial feature
vector X, initially empty. At any moment ¢, the position i in
X is occupied by the value x; produced by module F; if the
module finished already, or is empty if the module is still
executing. Every time a new value x; becomes available, a
subset .§ of classifiers is dynamically chosen based on the
content of X and the current recognition context R. The
classifiers in .S are then executed in the order of their
known performance, until either all of them have been
executed or a predefined reaction time limit is reached.
The context R identifies an arbitrary, domain-specific
partitioning of the feature space.

The meta-classifier combines the set of partial
classification results as soon as any results become
available and produces a partial result o, - essentially an
early best guess — together with a confidence level p(w,).

Partial result T

Meta-Classifier |g Context
Classifier; Classifier; Classifier,
x| x 0 B 0 Features
A
FEM, FEM, FEM,
W ‘,
Raw data

Fig. 1 The pipeline architecture. Results are propagated out even
though some of the modules have not yet finished.

217

The estimate is updated every time another classifier

completes its execution, The combination of results can be

done by any standard method like voting, Borda count etc.
Using this model, the reaction time T becomes:

min(Ty;)+ min(Ty) ST < ZTFi+max(TCj)_)

T is closer to the lower bound if the features required by
the fastest classifier are extracted first.

Under no time pressure, the model described above
eventually produces the same final classification result in
the same amount of time as (1). However, (2) shows that
the proposed architecture can significantly reduce the
reaction time of the system by generating early partial
results that might be good enough to support a quick
decision. The reaction time can be improved even further
by carefully selecting the feature extraction order when
designing the system. The possibility of automatically
adjusting the priorities of the feature extraction modules
based on the performance of the classifiers, so that the
features required by the best classifier are extracted first,
still needs to be investigated,

1II. DYNAMIC SELECTION OF CLASSIFIERS

The dynamic classifier selection step in the model
introduced above consists of three parts:

- determining the set S, of classifiers that can be
activated given the current partial feature vector X and
recognition context R

- ordering the set based on classifier performance
estimates

- executing the classifiers in Sy in order, until either all
of them have been executed or the predefined reaction time
limit is reached.

Finding .S, means determining if X and R contain all the
information needed by the classifier C;. It requires detailed
knowledge about the available classifiers and their
dependency on features and context. It can be formalized
as an activation function We(X, R) that returns 1 if the
classifier has sufficient information or 0 otherwise.

Ordering the elements of 8, requires estimating the
performance of each classifier, defined as:

perf(C) =4, (Ru(T,), 3)

where Ac(R) is the accuracy of classifier C in the context
R, T, is the average execution time of C and u is urgency
function of the meta-classifier. The accuracy of the
classifier can be estimated using various methods. We
propose a function of the total number N; of feature
vectors known to occur in context R and the number Ngp of
such vectors correctly classified by C before:

NCR
N ¥

R

A (R) = “

Both A¢(R) and T, can be easily learned during the training
or validation phase of each classifier C.

The urgency function u# is a way to express the
importance of classification speed relative to accuracy.
Any monotonically descending function such as 1/7, is a
good candidate. The meta-classifier could use different

urgency functions for different feature vectors or contexts,
but must use the same one for the entire recognition
process of any given vector X.

IV. EXPERIMENTAL RESULTS

We used the proposed meta-classifier architecture in a
word prediction scenario. The pattemn to be recognized is a
sequence of letters representing the beginning of a word
being typed by the user and the result of the classification
is the most likely word to start with that sequence.

The training and test corpus consisted of 2000 real-
world emails sent by a single user. Out of these, 1800
were used for classifier fraining and the remaining 200 for
testing. The training corpus contained about 8000 different
'words.

We employed three different base classifiers: dictionary,
recipient dictionary and bi-gram+. The dictionary classifier
uses the word, frequency map of all the words extracted
from the training corpus. The recipient dictionary classifier
uses a similar approach, except it has one such map for
every known destination email recipient. The bi-gram+
classifier uses the frequency map of all pairs of vocabulary
words known to appear immediately one after another and
the frequency map of all the words in the vocabulary that
can appear at the beginning of a sentence.

In modeling the word prediction problem as a
classification problem, each letter in the sequence to be
recognized was interpreted as a feature. The recognition
context was defined to contain the recipient of the test
email, the previous word in the sentence and the number of
letters in the current sequence. Once the base classifiers
have been trained, an estimate of each classifier’s

~performance was generated using the training data, for

every kmown recipient, word sequence and substring
length. This information was built into the meta-classifier.
Table I shows the results obtained for the test data. The
first three rows show the individual accuracy and speed of
each base classifier (accuracy was measured as the percent
of letters predicted correctly). It is interesting to note that
the recipient dictionary classifier is about an order of
magnitude more expensive than the other two. The fourth
row shows the performance of a simple Borda count meta-
classifier that combines the results from all three base
classifiers. The next two rows show the performance of the
proposed meta-classifier without an urgency function. Both
rows exhibit higher average accuracy than any of the base
classifiers. The execution time in both cases is significant
though, due to the extensive use of the recipient dictionary

TABLEM. Experimental results for a word prediction problem.

Classifier . Success Execution
rate time
Dictionary 29% 35ms
Recipient dictionary 24% 209ms
Bi-gram + 25% 34ms
All3 34% 399ms
Top 1, w(T)=1 32% 85ms
Top 2, u(T)=1 35% 241ms
Top 1, w()=T"" 33% 38ms
Top 2, w(T)=T" 35% 121ms

218

classifier.

The last two rows show the results of the proposed meta-
classifier using the urgency function 2(T)=T"". Not only is
the accuracy still excellent in both cases, but the execution
time is now considerably less, because the recipient
dictionary classifier is not used so often anymore.

V. CONCLUSIONS

The paper introduced a meta-classifier architecture for
time-critical pattern classification systems, designed to
generate partial classification results even before all the
features have been extracted. The architecture uses a
context-based, dynamic classifier selection method to
determine the optimal execution order of the base
classifiers such that good partial estimates are produced as
quickly as possible. Optimality is defined as a function of
both accuracy and speed. Experimental results on a word
prediction problem have shown that the model has great
potential, but future work is needed to validate it in the
computer vision and image recognition domain.

VI. REFERENCES

[1] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari,
“On multiple classifier systems for pattern
recognition”, in Proceedings of the 11th International
Conference on Pattern Recognition, 1992, vol 2, pp.
84-87

A. K. Jain, R. P, W. Duin, J. Mao, “Statistical pattern
recognition: A review”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, pp. 4-37..

{21

1. Kittler, “A framework for classifier fusion: is it still
needed?”, Advances in Pattern Recognition. Lectures
Notes in Computer Science, vol. 1876, pp. 45-56, F. J.
Ferri, J. M. Inesta, A. Amin and P. Pudil, Eds.,
Springer-Verlag, 2000

(3]

[4] G. Giacinto, F. Roli, “A Theoretical Framework for
Dynamic Classifier Selection™, in Proceedings of the
15" International Conference on Pattern Recognition,
2000, pp. 2008-2011

G. Giacinto, F. Roli, “Methods for Dynamic Classifier
Selection”, in 10" International Conference on Image
Analysis and Processing, 1999, pp. 659-664

[3]

A. Tsymbal, S. Puuronen, V. Terziyan, “Arbiter
Meta-Learning with Dynamic Selection of Classifiers
and its Experimental Investigation”, Advances in
Databases and Information Systems, Lecture Notes in
Computer Science , Vol. 1691, pp. 205-217, J. Eder,
I. Rozman, and T. Welzer, Eds., Springer-Verlag,
1999

(6]

R. O. Duda, P. E. Hart, D. G. Stork, Paitern
Classification, Wiley-Interscience, 2001.

(7]

R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules”, in Proceedings of the
20th International Conference on Very Large
Databases, 1994, pp. 487- 499

[8]

[91 L. Vuurpijl, L. Schomaker, “Multiple-agent
architectures for the classification of handwritten
text.”, in Proceedings of the International Workshop
on Frontiers in Handwriting Recognition, 1998, pp.
335-346.

219

