An Access Control model for CORBA

Mirel Muresan 2
BCD Romextera
P-ta Consiliul Europei 32C
2500 Alba — Iulia
ROMANIA

m.muresan@mailcity.com

Abstract

Integration of security and object-oriented
techniques is critical for the successful deployment
of distributed object systems, Object Management
Group published a security service specification
called CORBA Security to handle security in object
systems that conform to the Object Management
Architecture[2]. This paper provides a definition of
the authorization part of CORBA Security using a
Typed Access Matrix (TAM) model, The
dependencies among the authorization elements are
analyzed and possible interpretations for access
control decision and audit function are given.

Key words: authorization, CORBA, distributed
object systems, types, roles, access control

1. Introduction

One of the main purposes of abstraction
in middleware architectures is the separation of
the underlying layers from the application layer
above to facilitate portability of application
code, as well as enabling interoperability across
differing underlying technologies. In addition,
the middleware abstraction layer should make it
possible to replace the underlying technology
without affecting the application code. The
CORBA security services specification is based
on this idea and therefore tries to abstract the
application logic from the underlying transport
and security mechanisms. This should present
the applications with a generic security service
that facilitates portability, interoperability and
flexibility. The CORBA Security Services
specification[1] was first published in 1995 and
consequently went through several updates to
mitigate a number of discovered architectural
problems, in particular regarding interoperability
and portability. There are also a number of
additional security-related documents, most

267

Tosif Ignat ‘!

Faculty of Automation and Computer Science
Technical University of Cluj — Napoca
Gh. Baritiu 26-28
3400 Clyj-Napoca
ROMANIA

iosif.ignat@cs.utcluj. ro

notably the Security Domain Management
Membership Service revised submission, and a
final submission for Common Secure
Interoperability v2(CSIv2), which is supposed to
fix interoperability problems of CORBASec, and
an informal draft for an Authentication Token
Layer (ATLAS), which is supposed to fix
interoperability problems of CSIv2. The design,
specification, and implementation of security
policies and the management of the
corresponding access rights at runtime are both
error-prone and security - critical. There are few
methods or tools that provide adequate support
for application designers and security
administrators in distributed object systems. The
main problems are ensuring scalability while at
the same time allowing the description of fine-
grained accesses, which requires appropriate
grouping constructs. A related problem is
manageability. To make large numbers of fine-
grained access rights manageable, it is necessary
not just to group these rights but also to provide
abstractions that represent the underlying
policies.

In this paper, we are concerned with the
support for specifying access control policies,
using @ TAM matrix model[3] which introduces
the notion of #ype. In general terms, an access
control policy is a description of which accesses
are allowed and which are denied. In a more
technical, but still abstract sense, an access
control policy is a set of rules that, when
parameterized with access control information,
is evaluated by an access decision function to
yield a boolean result, i.e. an access is either
allowed or denied[4]. We take a lot of function
which have the role of specifying and managing
access control policies and that allow

Page 1 of &

administrators to deal with abstractions that are
adequate for their tasks.

Because we cannot rely on the actual
identity of users, as they are not known in
advance, we have ascribed them the role, where
roles represent a combination of user groups
with sets of authorizations, or just a set of
authorizations. In other words, roles are sets of
users and group principals based on their
common aspects in different interaction
contexts.

Role names for sets of users are declared
in role clauses and assertions which express
requirements on the authentication service used
to authenticate users in roles.

The contributions of this paper are to
type the elements of CORBA Security Service
for access rights. The rest of this paper is
structured as follows. Qur access model is
presented and discussed in section 2. Section 3
contains a realistic example for a policy with
dynamic right changes and section 4 represents
the conclusions of this work.

Roles

To support development, deployment,
and management of policies in potentially
diverse environments, we cannot rely on the
actual identity of users because they are not
known in advance. With regard to' object
invocations, the most suitable abstraction for
users is that of a role as it allows us to
concentrate on the specific, logical function in
which a principal is operating on application or
system objects. Our notion of role is different
from the widely-used role concept in role-based
access control (RBAC) where roles represent a
combination of user groups with sets of
authorizations[12] .

Roles are sets of users and group
principals based on their common aspects in
different interaction contexts. We assume a
public-key based service like SSL[6,13,11] that
issues privilege attribute certificates that
represent role membership to principals upon
request and whose signature is trusted by the
access decision function. A security service like
OMG can then manage access sessions between
callers and objects so that objects always see
"users in roles" rather than individual users. A
deployer of a policy must check that role
membership is certified in accordance with the
assertions expressed in the policy. If existing

268

roles do not map well, new roles need to be set
up in the authentication service.

2. The Authorization Specification

In this section, we develop a
specification that defines these semantics of
access control in Corba.

2.1 Structure

Let O denote the set of objects, let D
denote the set of domains and 7 denote the set of
object interface which require that an object has
at least one interface . We assume a relation
domain :0 x D[5,1] that assigns objects to
domains and relation interface: O x I [5,1]gives
the interfaces to which an object belongs, in
both case is verify relation [D,0] <{T, F} ,
[d,0]=T, o € d and [O,I] ={T,F}, [0, i]=T, oe
1.

But, an object instance may have a lot
of names. We denote IO the set of names of
objects and assume the relation instance_ name
:0x 10— 1[5,1]

Let M denote the set of methods, well
defined by an interface and its name, in which
case we may say that a tuple <m,i> unic identify
an operation. In conclusion we denote a relation
operation : M x O[5,1] that assigns methods to
objects and IM denote the set of operation
names and we assume a relation
operation_name : I x IM —M.[5,1]

Let A denote the set of privilege
attributes and A’ the set of privilege attributes
in different delegation states used in state
delegate. Finally, the authorization units is the
set AS =AuA’.

We consider R the set of rights, its
elements may be noted with r. RightFamilies
subdivided into sets of rights types.

Let Mode ={allow, deny} and we
observe that a right is well defined by an
operation, a permission and a family of rights,
in conclusion we may define R =IM x Mode x
RF where RF is the set of rights contained by
RightFamilies .

U is the set of principals or users, the active
entities in the system. The relationship between
users and privilege attribute types is defined
outside of the CORBA specification. Let PA(u)
denote the set of attribute types assigned to the
user u, which implicitly determines that the
state is of initiator or delegate.

Page 2 of 6

Let us define a function for the users of the
system named Swubject :U x ROLE x D —
{T,F}, where ROLE is the set of roles of the
subjects in the system.

In the model the are two types of

semantics, like: Disjunctive semantics(Any
Right)[1], Conjunctive semantics(All Rights)[1].
In conclusion the operations requested by an
object are typed by the semantics of rights.
The semantics have two types AND and OR,
when an operation is well-defined by a triplet
like {s, im, i} where S={ AND, OR} , seS,
imeIM and iel.

On the other side an object may by
transient or persistent. An persistent object
contains an indefinite repetition of request on it
and a transient object does not contain repetition
on it. The history of a persistent object may be
length, for example an Account object may
have a hundred of credit and debit operations. In
this case the dynamic separation of duties gives
to the subject the ability not to perform two
conflicting operations on the same object and
optimizes the audit operations. Separation of
duties can be enforced by keeping the following
history information: the entire history of
transient objects, a partially fixed long history of
persistent objects for non-repetitive portions of
the transaction. :

In conclusion, let IT be the set of object
types which has elements {persistent, tranzitiv}
and we may define an interface instance by a
triplet like { it, io, i}, where it €IT, io€lO and
iel. With the above descriptions of the elements
of the CORBA Security Model we can give a
formal definition of its structure.

A CORBA Security state is a four-tuple
(SUB,OBJ, T,AM) where SUB=ASUOUM and
OBJ=IUUUD are analyzed as follows:

> SUB is the set of subjects
> OBIJ is the set of objects, SUB< OBJ

> T : OBJ — T is the type function which
gives the type of every objects. AM is the
access matrix, with a row for every subject
in SUB and a column for every object in
OBJ. We denote the contents of the (S,0)
cell of AM by [S,0]. We have [S,0]cR

269

Where :

R={s, g, m, u, parent, cread, etc}
and
3= T T ap where :

3 o =IuUuD like { Account, Bank,
Ui, Uy, Us, OSS_TAM }
and

Tar=ASUOUM like
{Access_id:Uj,Access_id:Us,Access_id:Us,U3,Bank,
Debit,Credit,Balance,etc}

Also we may say like that well-formed
CORBA Security state[5] is a state(S,0,T,M)
in which the access matrix satisfies the following
condition:

Vo € O, d € D:d e domain(o)

We can give a concrete definition of relations as
follows:

domain :0 x D— {T,F}, defines the
relation between objects and domains.

interface: O x I — {T,F} define the
relation object interface

operation: M x O x § — IM define the
relation methodes, objects and semantics into
the set of operations unic identified

rights_in_domains: D x 2 - 2R
define a function mapping a set as;,as;..as; of
privilege attributes (where Vi, 1<i<I ; as; EAS)
in a domain dj € D (where 1<j<n) to a set of
rights r1,r2,..rp where Vi, 1<i<p ;r; €R) that are
effects for the given set of attributes and roles
[9].

object_rights:(2° x 2 ® x Jobj x ROLE)
— 2% define a function mapping sets of rights
returned from rights in_domains for every
domain in D, of the objects #ype from domain in
function of role ro,e ROLE (where 1<k<s), to
a set of effective rights.

By this functions, we identify the
partition RR=M[M,]] that defines the rights
required to invoke an operation, and partition
GR = MJAS,D] that defines the set of rights
granted to privilege attributes. . Another
advantage is the possibility of using the policy
for control of information by interface, ORCON
(originator controlled). The ORCON policy[3]
require that the creator (i.e. originator) of the
object retains control over granting access to
the information to the object,

Page3 of 6

We assume this relations ORCON:
(2°xASxT 5x2" x ROLE)—2*® x 2%x ROLE
and a control function of types of domain level
by roles Role Control : Jo; x 2 x ROLE—>
Jobe

Another function is Audit_Control: 3.
x M x O—{T,F} which realizes an efficient
management of audit types of system, like in

[7.8].
System state

A system protection state is usually not
constant. Objects and subjects are added or
deleted from a system, and rights may be
granted and revoked for the purposes of
delegation of responsibility or as part of an
application - specific security policy. We
distinguish the following case:

e discretionary granting or revocation,
using the access matrix which contain
the rights modified explicitly by the
security service.

o dynamic granting or revocation is
performed implicitly by the service, using
the function ORCON :

o delegation occurs implicitly during the
course of an operation invocation when
the target object delegates the call to
another object.

3. EXAMPLE

We presents an application- specific
policy for a system that supports banking
operation on a bank. This system is a simple
workflow application and supports the following
design:

Application design

We consider two interfaces of type
Bank and type Account in the domain typed
0SS TAM where the first manages the
accounts with its operations and the second
manages the account of the client.

interface Bank{

Account create(in string name, in float
balance) raises (AlreadyExist);

void remove(in string name) raises

(NotFound);

Account get(in string name) raises
{ NotFound);

b

270

interface Account{
readonly attribute string name;
void credit(in float value);
void debit(in float value) raises
(UnauthorizedBalance);
float balance();
15

The object of type Bank has the right to
create objects of type Account from the strings
of mput by calling create(). After it has created
the object it may give it the reference by calling
get() or remove the object by calling remove().

The object type Account allows credit,
debit and list of the balance of bank client.

Policy design

The roles present are: BankManager,
BankUser, BankClient with the assertion :

Q BankClient c BankUser — BankManager

a BankClient o BankUser = g
BankManager BankUser = &

o cardinality(BankManager) = 1

We see that a membership in
BankManager implies membership in role
BankUser and a membership in BankUser
implies membership in role BankClient.

Static Policy

The role BankManager controls objects
of type Bank and Account , BankUser controls
objects of type Account and BankClient
partially controls objects of type Account. (see
the access matrix)

Dynamic policy

The most interesting of this policy are
the changes in the protection state when the user
in role BankClient of type U3 may be calling
only balance() operation and credit() no; from
then on, they may. Thus, the access permitted be
depends on earlier accesses, similar to the
Chinese Wall[10]. To describe transitions like
these that are directly connected to changes in
the application state, we use the ORCON
function.

Page 4 of 6

OBJ |Access_id :{ﬂ.ﬁl\;:':”e‘ssﬁld: Ujhcces s ad:U Account i Bank 0SS TAM ,-“U[i UQ:— U3 |
SUB 1 2 3 ‘ - : ! ; |
i : |
Access_id :U1 CORBA:g,u,s T ;
g'm ‘ i !
| | |
b ORB: own i i
Access_id: U2 |ORB: ORB: CORBA:g,u, s’ T R
cread parent ,m ; ; |
lnccess_id:U3 Get from U2 CORBA:u i iT
CORBA:g,m | !
Create:; AND rCORBA:g,u,s,m | ‘
- '0RB: own | |
Remove : AND {CORBA:g,u,s,m i
ORB ; own “
Get :AND CORBA:g, u, 5, m I
Credit :AND B CORBA:g,u,m
Debit : AND CORBA:g,s,m
Balance :AND CORBA:u -
BankManager T T T
BankUser T T T
BankClient T T

This function permits the user in role
BankUser of type U2 to change the rights of a
user in role BankClient for a while, because the
user of type Ul in role BankManager, who is
the owner of the objects type Account, allows
to the user of type U2 in role BankUser the right
created.

4. CONCLUSIONS

Existing midlleware technologies are
necessary but not sufficient for the effective
protection of the resources of distributed
enterprise applications. In this paper we
suggested an_ authorization specification using
Typed Matrix in CORBA Security.

We have tested this model using a
Visibroker product with the SSL
authentification protocol and has been
implemented in Java.

The authorization model does not limit
the types, it can be different and have multiple
types like IDL interface, domains, users,
privilege attributes. They may be combined,
added or erased as wish you want and confaire
an dynamic model in the side of rights.

Because it is a discretionary model, using
the matrix we may modify the rights in an
explicit mode. The dynamic rights are implicit
(by ORCON function) and the other use the
delegate.

The information protections it not part
of the implementation and does not depend on
the environment, the model separates the
specific policies from the development of
application.

271

The types are used for protection, the
model is fine-grained and offers the possibility to
group and create a framework as the person
pleases.

This model leaves open all design
decisions about how implicit authorizations are
derived, how rights propagate in groups, which
conflict resolution strategies are used and how
priorities are employed.

The separation of authorization and
application logic simplifies the development of
both distributed systems and their security
functions and therefore makes it easier to
enchange their quality.

Equally important, it paves the way for
the uniform use of authorization mechanisms
across (heterogenous)system boundaries, as
well as for centralizing enterprise security
administration and management, traditionally
time consuming, costly.

5. REFERENCES

1. OMG. CORBA Security Service
Revision 1.7. November 2001

2. OMG.The Common OQObject Request
Broker Architecture and
Specification, Revision 2.3 June 1999

3. Ravi S. Sandhu. The typed access
matrix model. In Proc IEEE Symposium
on security and Privacy, pages 122-136,

1992
4. Ulrich Lang, Access Policies for
Middleware, Technical Report,

University of Cambridge Computer
Laboratory, ISSN 1476-2986, May 2003

Page 5 of 6

10.

11.

12.

13.

Gunter Karjoth, Autorization in Corba
Security m Proc ESPORICS’98 pages
143-158,1998

Key Tools SSL, Hitp://www baltimore.-
com/keytools _ssl.pdf

Ravi S. Sandhu, Pieragela Samarati,
Authentication, Authentication, Ac-
cess Control and Intrusion Detection,
The Computer Science and Engineering
Handbook, CRC Press 1997

Ravi 8. Sandhu, Pieragela Samarati Au-
thentication, Access Control and Audit,
ACM Computing Surveys, Vol. 28, No
I, March 1996

Konstantin Beznosov, Engineering Ac-
cess Control for distributed Enterprise
Applications, Florida International Uni-
versity, Miami, Florida, 2000

Sushil Jajodia, Access Control, INFS
762, Fall 1999

B.Lampson, M.Abadi, M. Burrows, §i E.-
Wobber, “Authentication in Distribut-
ed Systems: Theory and Practics”, In
Proceedings of ACM Symposium on
Operating Systems Principles, Asionar
Conference Center, Pacific Grove,Cali-
fornia, 1991

Ravi S. Sandhu, Edward J. Coyne, Hal
L. Feinstein and Charles E. Youman
Role-based access control models.
IEEE Computer, 29(2):38-47,1996
Roland L.Rivest ,Cryptology, MIT Lab-
oratory for Computer Science, Cabrige,
Massachuttes 02139USA.

Page 6 of &

