Ontology utilization in MARABU — a support system for modeling, simulation and
control design

Ivana Budinska
Institute of Informatics SAS
Ditibravska cesta 9
845 07 Bratislava
Slovakia
utrrbudi@savba.sk

Abstract — The paper describes a support system for
modeling, simulation, and control system design, based on the
user’s requirements. The system integrates some modeling,
simulation, and control design tools. It enables users to model
a real system, design control system and then to simulate
results. The user’s requirements are grabbed via so called
questionnaire. The user is lead through a system of questions,
similarly to an expert system, with the aim to specify a real
system as in depth as it is possible. In order to manage user’s
requirements and to match the best tools to the requirements,
ontology of integrated tools, methods and theories is created.
Each tool, or method is characterized by a set of attributes —
properties, which are captured in ontology. The reasons of
ontology creation for system MARABU are discussed.

I. INTRODUCTION

The system MARABU is based on Multi Agents
technology and it is intended to serve experts and technical
staff from manufacturing enterprises, and students of
technical schools, as well, to find a solution (a model, a
control algorithm, etc.) on the basis of user’s requirements.
User’s requirements are entered to the system through an
interactive questionnaire.
The system consists of three layers:

1. Interaction layer

2. Process layer

3. Knowledge base layer
An interaction layer: provides an intelligent user’s
interface. The core of the interaction layer is a User agent
(UA). Interaction layer is crucial for capturing user’s
requirement. User’s requirements describe a current
systern, which the user wants to model, control or simulate.
To avoid complicated transformation of wuser’s
requirements into the form that is comprehensible for other
agents, users are lead through questionnaire and are asked
to enter attributes’ values. These values correspond to
attributes, by which tools, methods, and algorithms in
Modelling, Control and Simulation Blocks are
characterized and determined. The questionnaire is built
similarly to an expert system.
A process layer: is o core of the support system. It consists
of three blocks: Modelling, Control System Design, and
Simulation. Each block is composed from a corresponding
agent (Monitoring agent MA, Control system design agent
CA, Simulation agent SA) with a communication facility,
search engine, and a reasoner. A Generic block (BG) is a
multi agent system, which is responsible for managing
activities of all other agents, and provides interfaces among
the system, users, and external applications. There is one
more agent in the system — Monitoring agent. The role of
this agent is to monitor activities of other agents and
accordingly update database. This is the only agent that

T.- Tung Dang
Institute of Informatics SAS
Dubravska cesta 9
845 07 Bratislava
Slovakia
utrrtung@savba.sk

can write into database. MA, CA, and SA can only read in
the database and search for solutions that respond to user’s
requirements.
A knowledge base layer: The system works in two
regimes:

1. finding an appropriate tool, method, or algorithm

2. searching in a case-base.
Therefore the database is organised as a structured
database. The database for tools, algorithms, and methods,
stores metadata for each item. There are two types of
metadata associated to each item in that part of the
database. There exist data describing the item — attributes,
and data that enable to locate the item — link, address, etc.
The other part of the database is called a case-base library,
It contains a list of some ready-to-use cases and associated
solutions.
Section 2 describes in more details architecture of the
system MARABU, agents that compose the system, and
their behavior. Section 3 is addresses to a knowledge base,
especially to ontology creation. Section 4 deals with an
inference engine and describes some methods to discover
the required solution. Also utilization of a Case-based
reasoning (CBR) is introduced there. Section 5 contains an
example of otology for MARABU system. Future work
and implementation aspects are discussed in the
conclusion.

II. MAS ARCHITECTURE OF MARABU

The core of the system is created by a Generic block (see
Fig.1), which consists of the following agents:

Monitoring Agent (MoA) - follows the system behaviour
after applying the recommended method for designing the
control. If all the requirements are satisfied, then MoA
updates the database by newly achieved results. That
means the system stores all solutions for the next reuse and
application. Otherwise, the MA and CA have to repeat
their calculations.

User Agent (UA) — interposes communication between a
user and the system. UA transfers user’s requirements to
the system’s agents and on the other hand return solution
tfrom the system’s agent to the user in a human readable
form. There is one UA per user in the system.

Modelling Agent (MA) — after receiving information
about the process, search for appropriate modelling tools
and algorithms on the basis of user’s requirements. It
returns suggested algorithms and ask for more precise
information according to achosen algorithm. The final
decision on which algorithm and/or tool has to be chosen is
up to the user. Finally, Modelling agent returns a model of
described production process.

301

7

User-Desi. . ‘
I Request select attibutes |

T
|
|
|
I
I

I
!
1
1
i
!

1
reasoning search
3 & =)

Ll T
L {
{ ¥
| |
1 I
1 |
|]
hms I
X reasoning searchfpr control algorithm

8
/SLJrch control sigorill

1
atribules
1 o
} q]
h . ‘ search related lnodels
' I 1
¥ L
b : U found solu‘llcn
t
: ! X 1
} 3 I
i i !
|
t |
]
1
i
solution sccepted i
A

I
>] proposeq solution
| Return cortrol L rithm \
1
T
|
|
|
|

I
/LJ write new case

—E---—-gdl--—-=-==---[=

Fig. 1 - Schema of communication among agents.

Control Agent (CA)- receives a finally chosen model with
all necessary attributes defined. On the basis of the model,
CA searches for an appropriate control algorithms in the
database. Through UA it negotiates with the user and
finally chooses appropriate control algorithms. The user
has to choose an algorithm from the suggested ones and
specify all needed values for that. CA returns control
algorithm for the process according user’s specifications.
Simulation Agent (SA) — is responsible for simulation of
control for the chosen model and control algorithm with
the aim to help the designer to assess the proposed
solution.

Agents in a proposed system cooperate to find a solution to
satisfy user’s requirements. should be tested and when the
proposed adapted solution shows to be good, it is entered
to a database as a new case related to a new solution.

An algorithm for assisting a user in modelling, designing
the control system and simulation is as follows:

Initialisation: filling database with default data. There are
two types of data in the database: description of cases —
basic attributes, set of default solutions. There are relations
among default cases and default solutions.

Input: User’s tequirements are given through PA. Users
are supervised to fill in a questionnaire, where basic
attributes for the current situation (description of
production process) are described. After user’s
requirements are recorded, MASS begins search for
appropriate modelling tool.

1. MA asks SeA to find a similar situation from
database of cases. Requirements: search and data
mining algorithms.

2. After finding similar case, related solutions —a
method for modelling, are sent to the user.
Otherwise a new search is executed as long as a
solution is found.

3. CA receives a (mathematical) mode! identified by

302

MA and numerical parameters entered by the
user. On the basis of numerical parameters of the
model, CA adapts the past solution to the current
model and designs the control system.

4. MoA follows the system behaviour after applying
the designed control system.

5. SA receives mathematical model and design of
control system. Its goal is to simulate proposed
control system and verify it.

A basic schema of communication among agents is
depicted in Fig.1.

A multi-agent support system development is based on
Java technology. In order to develop a system in
compliance with FIPA standards and specifications,
JADE - Java Agent Development framework was
chosen for the project. JADE is also used as an agent
middleware that implements an agent platform,
Agents are implemented as one thread per agent.
Advantage of MAS is in parallel processing of tasks,
which is enabled using JADE. The platform provides a
GUI for the remote management, monitoring, and
controlling of the status of agents, allowing e.g. to stop
and restart agents. It enables also to monitor messages
and communication among agents. JADE also
supports scheduling of cooperative behaviour, it
schedule tasks in effective way. The important feature
of JADE is integration with JESS, where JADE
provides the shell of the agents and JESS provides the
inference engine that enables necessary reasoning.
Although there exists some predefined rules for
reasoning in JADE and JESS it is required for the
MARABU system to develop new rules to execute
valuable reasoning based on the user’s requirements.
The problem is, that inference engines offers tools for
rule-based reasoning. The system MARABU
reasoning is based on cases, so a case-based reasoning

¢ B3 sgantPrarionn
& Cpeadeds 1G

9 Bamanco
Wil

B |

T Rerdem pom i w

Fig. 2 - A screenshot of the system MARABU

has to be integrated into the system. A screenshot of
the system MARABU is in Fig.2.

III. DATABASE VS. ONTOLOGY

Agent-based sofiware integration involves designing
ontology for a specific domain and integration of different
tools to allow agents communication using that ontology.
Ontology presents a shared understanding about a certain
specific domain. To build ontology for a system
MARABU a cooperation of experts from the area of
control theory is essential. The system intends to integrate
methods and tools that are known from various field of
research in the area of modelling, control and simulation of
continuous and discrete events dynamic systems. Also
system with distributed parameters are integrated. There
are huge amount of known methods, tools and algorithms,
but not many of them can be integrated into a distributed
support system. Each method, tool, and algorithm have to
be described using specific attributes which enables to
recognise, which item 1is applicable for which
manufacturing system. Also manufacturing system has to
be described using specified attributes, which matches to
the attributes of methods, tools and algorithms, ‘

In order to make the system as useful and effective as
possible, on ontology approach for knowledge
representation was chosen.

In comparison to a database, ontology allows to handle not
only numerical transactional data. It is suited to model
unstructured informal knowledge. However the advent of
object oriented databases, improved logics and faster
inference is making the distinction between DBs and
ontologies more fuzzy, i.e. there is (multiple) inheritance,
strong encapsulation, fuzzy set algorithms, meta-data
standards, neural networks to (train, discover and
disambiguate meaning, and increased computing power so
we can cast a larger window to get at conmtext. Also
ontology enables processing knowledge and data, the most
important role of ontology is in defining sharing meaning,
emergence and discovery of gaps and for improving tacit
knowledge transfer. If an organization or group can
leverage their language, e.g. by having shared patterns,
they can learn, become more aware and respond faster.
Besides ontology, a knowledge base may contain
information specified in a declarative language such as
logic or expert-system tules, but it may also include

unstructured or unformalized information expressed in
natural language or procedural code.

Knowledge representation is the application of logic and
ontology to the task of constructing computable models for
some application domain. Each of the three basic fields:
logic, ontology, and computation; presents a different class
of problems for knowledge sharing:

e Logic. Different implementations support different
subsets and variations of logic. Sharing information
between them can usually be done automatically if the
information can be expressed in the common subset.
Other kinds of transfers may be possible, but some of
the information may be lost or modified.

e Ontology. Different systems may use different names
for the same kinds of entities; even worse, they may
use the same names for different kinds, Sometimes,
two entities with different definitions are intended to
be the same, but the task of proving that they are
indeed the same may be difficult or impossible.

o Computation. Even when the names and definitions
are identical, computational or implementational side
effects may cause the same knowledge to behave
differently in different systems. In some
implementations, the order of entering rules and data
may have an effect on the possible inferences and the
results of computations. Sometimes, the side effects
may cause a simple inference on one system to get
hung up in an endless loop on another system.

In the system MARABU knowledge is modelled using an
OWL — Web Ontology Language. The application of the
OWL format for ontology for the agent system is relatively
new. One advantage of owl ontology is the availability of
tools that can reason about it. Tools provide generic
support that is not specific to the particular subject domain.
Building useful and reliable reasoning system is not a
simple effort. Constructing ontology is easier. Constructing
ontology in owl enables to benefit from third party tools
based on the formal properties of the OWL language.

OWL ontology is a sequence of axioms and facts, plus
mclusion references to other ontologies, which are
considered to be included in the ontology.

303

pr—

@ uwl Thing
&-(C) continuous_systems
| +~{©cont_linear
| —1{C)cont_nonlinear
$— contral_design
i & O Continuous_regulator
- () Butterwort
- {C) Graham_Lathrop
~—{C) Naslin
—(©) Optimal_madul
—{C) Ziegler_Nichols
Q- @ discrete_regulators _
' @ (C)Algebraic_control_theary
~({EPSD
™ (S Poleplacement
- {C) deadheat
¢- (©) stability_and_guality_criteria
50* absolut_regulation_area
‘ algebraic_criteria
r——Ofrequencv_crmena
| —{Clinear_regulation_criteria
g @*'@ quadratic_regulation_criteria

- E disc,. nonlinear

©-~ (C} event_drive

©-(©) modelling_tools
Petti_nels
@ State_charts

w@ continuaous_models

- (©) discrete_models

= @ simulation

Fig, 3 - Ontology for MARABU using PROTEGE,
an ontology editor

IV. EXAMPLE OF ONTOLOGY FOR MARABU

Ontology for MARABU contains two basic parts:
1. Ontology of processes
2. Ontology of modeling, control, and simulation
tools, methods, and algorithms.
Ontology of processes:
o Continuous
a. Stochastic
i. Linear
time variant
time invariant
ii. Nonlinear
time variant
time invariant
b. deterministic
i, Linear
time variant
time invariant

ii. Nonlinear
time variant
time invariant
e Discrete
a. Linear
i. time variant
ii. time invariant
b. Nonlinear
1. time variant
if. time invariant
c. Nonlinear fuzzy
d. Nonlinear fuzzy-neuron
e. Nonlinear neuron

a. Linear
i. time variant
ii. time invariant
b. Nonlinear
‘ i. time variant
ii. time invariant

Ontology of methods, tools, and algorithms is built on the
basis its attributes. All methods, algorithms, and tools that
are integrated into the system is characterized thorough
common attributes. When an attribute is not applicable for
the specific tool, method, or algorithm, it is set to zero.
Attribute value representation is the basis for establishing
reasoning mechanism within the system.

V. USER’S INTERFACE — QUESTIONAIRE

In the system MARABU a specific user’s interface is
designed. Users access the system through an User agent.
The user is led through a system of questions, which is
called multi-level questionnaire. The questionnaire is built
similarly to expert systems and users follow the steps in
the questionnaire. The user enters his/her requirements by
answering questions. On the basis of answers, the next
level of the questionnaire is opened for him/she.
An example of user’s questionnaire:
Q: What do you want to do in the system?

— Modeling

— Control

. — Simulation

(Users can sequentially model the system, design a control
algorithm, and simulate the designed solution).
On the basis of choice, the next level of questionnaire is

opened:
1. Modeling:

Q: What kind of system do you want to model?

— Continuous

— Discrete

— Hybrd
(The second level is similar also for control and
simulation).

— Continuous:

1. Q: Is your system stochastic, or
deterministic?

= Stochgstic
= Deterministic

The system of questions is built on the basis of modeled
ontology for integrated tools, methods, and algorithms,

VI. INFERENCE ENGINE AND CBR

Three basic element for the GB (Generic Block) have to be
defined:

Attributes — is defined within ontology as properties (slots)
for each concept.

Rules — is defined within an inference engine and serves to
find solution for the user on the basis of user’s
requirements

Control strategies — for searching solutions on the basis of
predefined rules. The known control strategies used for
CBR are:

— Forward chaining

— Backward chaining

A Case Based Reasoning (CBR) is used within the system
to find a solution that matches the best to the user’s
requirements. The structured database is built
independently for all three block of the systems; however
all these databases are related to each other. The databases
contain a case library, and a set of solutions related to these
cases. Objects in the databases are represented by
attributes. For an attribute-value representation a couple of
methods can be used to measure a similarity degree. A
method of weighed attributes is used to asses similarity
between a current case (that the user has defined) and a
case in the case base. The weights allow expressing the
importance of all attributes.

Two different methods to evaluate attributes are used: user .

specific weights, which are given as a part of user’s
requirement through the user’s questionnaire; and case
specific weights (weights are specified as a part of
structured database). The third option is to use combination
of user specific and case specific weights to find the
solution that fulfil the users’ expectations the most and do
not neglect any important attributes given by case specific
weights.

In this paper, two methods proposed to extract information
from the database are presented. The first method is based
on the similarity degree between two arbitrary situations;
the second one is built on the inductive reasoning
principle.

The first method works on the following principle: the
agents calculate the similarity between two arbitrary
situations by comparing all their attributes. Relationships
among attributes are evaluated by any number (real or
fuzzy) that reflects how much a solution of one situation is
useful for the second one, with respect to these attributes.
The similarity degree is defined by a combination of those
partial relationships.

The second possible method is an inductive reasoning that
works as follows: starting with the most important
attribute, the agents sort and filter all cases that have the
same or to a certain degree the same attribute like the
target one. This cycle continues with less important
attributes, until only one candidate remains. The last case
remained is considered as the most similar to the target
cne.

Let refel), ely): {ELXEL} - [0,1] be a relation
expressing the dependence between two attributes (ef,,
el;)e EL. There are some important properties of this
relation. [4]

- refel;, ely) # refel,, el)) , resp. # (1 — refel,, el})),
i.e. this relation is not symmetric or inverse.

- re(el;, elz) = 1; when the solution proposed for
element e/, could be applicable to element e/; without
changes. For example, ef, is a lincar system with
complete information; el, is a linear system with
parametrical uncertainty.

- re(el;, el;) = 0 ; when both the elements have
disjoint domains of effects, i.e. the solution proposed
for el; is useless for element el;. For example, el; is a
discrete event system and e/, is a linear system.

- VelcEL re(Z el) =1l arefel &)= 0
The similarity degree between two arbitrary situations
Sim(,) is defined as follows:

Suppose a set of cases C of one class — manufacturing
system with a discrete or continuous production process
represents a case. Each case is described by a set of its
attributes 4.

C:{cl,cz,....} (D

C; '—*{aﬂ,afz,....am A ﬂy ed (2)

A is a set of attributes that can be recognized in any case. If
an attribute is not related to the case, a value is set to zero.
Let’s define a set of solutions:

S=1{s1,85,..} (3)
S ={elﬂ,€lf2 ,...} (4)

A Case Base is defined as a space of case descriptions and
case solutions;

CB=CxS (5)

User defines a case through attributes and the system starts
to search for similar cases in a CB.
Let a current case is defined as follows:

cc; = {ca,.; yeoes CQyy (6)

where cd; is an attribute j of a

current state /.
The general problem of similarity assessment is (according
to [1]):

sim((ccl s 5CCy)(cl 1ss00Cp))= (I)(Siml (cc[cl),..., Sim(cc,, c;))

- . - - (7)
A traditional similarity measures for individual attributes is
measured by a function @ that is monotone increasing in
every argument.

305

Inductive reasoning method exiracts the desired situation
by performing a search of a decision tree, which involves
all possible historical cases satisfying certain conditions. A
decision tree is generated as follows: starting with the most
important attribute — propose it is e/;, all cases that satisfy
the following condition are added to the decision tree.

re(ely |y €l sy) = 0 ®)

where coefficient o is a low bound that is used to restrict a
set of candidate situations. The classification process
continues with less important attributes, until only one
candidate solution remains.

After finding a similar situation to the current one, the
agents extract the solution that was used in this case (a
method for modeling, designing the control system and
simulation) and retrieve it appropriately to a solution for
the current situation. The user accepts the recommendation
and applies it into a practice. The last step that the CAS-
Decision System has to do is to observe the real behavior
of the system after the user has applied all the methods
proposed by the agents. The results achieved by an
observation are intended to evaluate the selected methods
and for later use.

VII. CONCLUSION
The paper describes a multi-agent support system
MARABU, which is dedicated to serve in modeling,
control system design and simulation of manufacturing
system, either continuous or discrete. That is way, the
system handle with a lot of knowledge about methods,
tools, and algorithms for modeling, control and simulation,

and about continuous and discrete systems as well. The .

system also integrates work from many areas of the control
theory and artificial intelligence. Such a way the system is
large and also distributed. To handle all relevant
knowledge, ontology approach was chosen. Ontology for
that system is built using OWL, which enables utilization
of third party tools for reasoning, and development of new
reasoning methods as well. Protégé as an ontology editor
was used to built ontology for the system, because there is
a good cooperation between Protégé, JADE and JESS.

VIII. ACKNOWLEDGMENT

This work was supported by a Science and Technology
Assistance Agency under the contract No. APVT-51-
011602.

IX. REFERENCES
For a paper citation:

[1] Bergmann, R. 1999 Special issue on case-based
reasoning, Engineering Application of Al, No. 12,
661-759.

[2] Fogel, J. 2001 ,Control Synthesis of Discrete
Manufacturing ~ Systems using Timed Finite
Automata®, Flectrical and Computer Engineering
Series, Advances in Signal Processing Robotics and

Communications Edited by Kluev, Mastorakis, WSEAS
Press, ISBN 960-8052-42-4 pp. 276-280.

For a book citation:

[3] Hriz, B.; Mrafko, L. 2003 Modelovanie a riadenie
diskrétnych udalostnych systémov s vyuzitim Petriho
sieti a inych ndstrojov. Bratislava 1. vyd,
VydavatePstvo STU, 297 p., ISBN 80-227-1883-1

For a conference citation:

[4] Dang, T.T.; Frankovié, B.; Budinskd, I. 2003 Case-
based reasoning applied for CAS-decision system, In
Proc. of 2nd IFAC Conference: Control Systems
Design, Bratislava, September 7-10, S. Kozdk, M.
Huba (Eds.), 6 pages, on CD

[5] Frankovié, B. 2003 New Approach in Computational
Cybernetics for Intelligent Adaptive Control of Non-
linear Systems, In Proc. of 1 Slovak Hungarian Joint
Symposium on Applied Machine Intelligence SAMI
2003, Herlany, Slovakia, February 12-14, 2003,1SBN
963 7154 140

[6] Ligus, J.; Lacifidk, S.; Gdbor, D. 2003 Analyze of
adaptive control and design of reference model. In
Proc. of the 1" Slovakian - Hungarian Joint
Symposium on Applied Machine Intelligence SAMI
2003. Herlany, Slovakia, February 12-14, 2003, ISBN
963 7154 140

[7] Végh, P.,; Hulké, G.; Belavy, C. 2003 Robust control
of distributed parameter systems. In Proc. of 14"
International Conference on Process Control 2003.
Strbské Pleso,June 8-11, 2003, High Tatras, Slovakia

[8] Zeng D., Sycara K.: Using Case Based Reasoning as a
Reinforcement Learning Framework for Optimization
with Changing Criteria; Proc. of. Seventh International
Conference on Tools with Artificial Intelligence;
Virginia USA, 1995;
http://csdl.computer.org/comp/proceedings/tai/1995/7312/00
/73120056.pdf

For other citation:

[9] http://www.w3.0rg/TR/2002/WD-owl-absyn-
20020729/#3

[10] Fridman Noy N., Hafner C.D. The state of the art
in ontology design,
hitp://www.aaai.org/Library/Magazine/Vol18/18-
03/Papers/AlMag]8-03-006.pdf

306

