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Abstract — Class fragmentation is an essential phase in the
design of Distributed Object Oriented Databases (DOODB).
Horizontal and vertical frapmentation are the two commonly
used fragmentation techmiques. We propose here two new
methods for horizontal fragmentation of objects with complex
attributes. They rely on Al clustering techniques for grouping
objects into fragments. Both methods take into account the
inheritance and aggregation/association hierarchies. We
provide quality and performance evaluations using a
partition evaluator function.

L. INTRODUCTION

The distribution design phase in an Object Oriented
Database (OODB) should handle data partitioning into a
cohesive set of fragments, their assignment to local
processing sites and the evaluation and fine-tuning for
systemn performance. There are two basic fragmentation
techniques: vertical and horizontal. In an Object Oriented
(O0) environment, horizontal fragmentation distributes
class instances into fragments. Each object has the same
structure and a different state or content. Thus, a horizontal
fragment of a class contains a subset of the whole class
extension. Horizontal fragmentation is usually subdivided
in primary and derived fragmentation.

Existing OO fragmentation approaches are usually
inspired from the relational fragmentation techniques. The
00 model is inherently more complex than the relational
model. Inheritance, polymorphism, class aggregation and
association all induce complex relations between classes in
an object oriented database. In the simplest OO model
classes have only attributes with scalar types (simple
attributes) and all methods refer local class attributes
(simple methods). Classes whose attributes have complex
types/other classes as their domain (complex attributes) are
the next step towards a real OO model.

Related Work

Fragmentation methods for OODB environments, or
flat data models have been generally considered in
Karlapalem [2], Ezeife [3], Karlapalem [4][5]. Ravat [6]
uses the Bond Energy Algorithm (BEA) for vertical and
horizontal fragmentation. Ezeife [7] presents a set of
algorithms for horizontally fragmenting models with
simple attributes/methods and complex attributes/methods.
She is using the algorithm developed in Ozsu [8].
Bellatreche et al. [9] propose a method that emphasizes the
role of queries in the horizontal fragmentation.
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We have already discussed an alternative fragmentation
method for OO models with simple attributes and simple
methods in [12], based on Al clustering techniques.

Contributions

We propose a new technique for horizontal
fragmentation in object-oriented databases with complex
attributes. Fragmentation in complex OO hierarchies is
usually performed in two steps: primary fragmentation and
derived fragmentation, Primary fragmentation groups class
instances according to a set of class conditions [12]
imposed on their simple attributes. Derived fragmentation
takes into account the class relationships (aggregation,
association). It groups instances of a class in fragments
according to the fragmentation of the related classes.

We propose an algorithm that unifies the two
fragmentation steps into a single step. Both: class
conditions and class relationships are modelled together in
a vector space. Each object is represented as a vector and
we use a hierarchical agglomerative clustering algorithm
for separating clusters (fragments) of objects.

The paper is organized as follows. The next section of
this work presents the object data model and the constructs
used in defining the object database and expressing
queries. It also introduces the vector space model we use to
compare objects, methods for constructing the object
characteristic vectors and similarity metrics over this
vector space. Section 3 presents our fragmentation
algorithm. In section 4 we present a complete
fragmentation example over a class hierarchy and we
evaluate the quality of our fragmentation scheme by using
a variant of the Partition Evaluator [12].

II. DATA MODEL

We use an object-oriented model with the basic features
described in the literature [8][11]. Object-oriented
databases represent data entities as objects supporting
features like inheritance, encapsulation, polymorphism,
etc. Objects with common attributes and methods are
grouped into classes. A class is an ordered tuple

-C=(K,4,M]), where 4 is the set of object attributes, M is

the set of methods, X is the class identifier and [ is the set
of instances of class C. Every object in the database is
uniquely identified by an OID. Each class can be seen in
turn as a class object. Class objects are grouped together in
metaclasses. This allows us to consider classes as being
instances of higher-level classes that describe the database
schema. This way the database schemna is self-describing.
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Classes are organized in an inheritance hierarchy, in
which a subclass is a specialization of its superclass.
Although we deal here for simplicity only with simple
inheritance, moving to multiple inheritance would not
affect the fragmentation algorithm in any way, as long as
the inheritance conflicts are dealt with into the data model.
An OODB is a set of classes from an inberitance hierarchy,
with all their instances. There is a special class Root that is
the ancestor of all classes in the database. Thus, in our
model, the inheritance graph is a tree,

An entry point into a database is a meta-class instance
bound to a known variable in the system. An entry point
allows navigation from it to all classes and class instances
of its sub-tree (including itself). There are usually more
entry points in an OODB.

Given a complex hierarchy H, a path expression P is
defined as Cp.4,. ...A,, n=1 where: C; is an entry point in
H, A; is an attribute of class C}, 4; is an attribute of class C;
in H such that C;is the domain of attribute A4;; of class
Ci;(12 i < n). In the general case, 4; can be a method call.
I i<n, then 4, must return a single complex type value (an
object).

As presented in [12], a query is a tuple with the
following structure: g=(Target class, Range source,
Qualification clause).

= Target class -- (query operand) specifies the root
of the class hierarchy over which the query
returns its object instances,

= Range source - a path expression starting from
an entry point and specifying the source class
hierarchy.

= Qualification clause -- logical expression over the
class attributes and/or class methods, in
conjunctive normal form. The logical expression
is  constructed using atomic  predicates:
parth_expression 6 value where 0 € {<><.2772,
in,o,0}.

1II. VECTOR SPACE MODELLING
Primary Fragmentation Modelling

We denote by O={q, ,..., g4 the set of all queries in
respect to which we want to perform the fragmentation.
Let Pred={p,, ..., p,} be the set of all atomic predicates O
is defined on. Let Pred(C)={pePred) p impose a condition
to an attribute of class C or to an attribute of its parent}.
Given the predicate p =C.4;. ...4, 8 value, p ePred(C,), if
class C; is the complex domain of A4;;,i=1..n, and 4, has a
complex type or simple type.

Given two classes C and C’, where C’ is subclass of C,
Pred(C’)2Pred(C). Thus the set of predicates for class C’
comprises all the predicates directly imposed on attributes
of C’ and the predicates defined on attributes of its parent
class C and inherited from it [12].

We construct the object-condition matrix for class C,
OCM(C) ={ay ,1= 1 S|nst(C)f, 1= j <|Pred(C)|}, where
Inst(C) = {0, ... 0,,} is the set of all instances of class
C, Pred(C) = {pi,..., pn}:

2.4
lil..m,aU:ag

0,if p;(0;)= false
L pOn=mue Y m

(1)

a;

Each line i in OCM(C) is the object-condition vector of
O;, where O;elnst(C). We obtain from OCM(C) the
characteristic vectors for all instances of (. The
characteristic vector for object O; is w; = (W, Wiz, ..., Wiy,
where each w; is the ratio between the number of objects
in C respecting the predicate p;ePred(C) in the same way
as O; and the number of objects in C. We denote the
characteristic vector matrix as CVM{(C) [12].

Derived Fragmentation Modelling

We have captured so far all characteristics of simple
attributes and methods. We need to express the class
relationships in our vector space model. We first model the
aggregation and association relations.

Given two classes Cp (owner) and Cy, (member), where
Cy is the domain of an attribute of Cp, a path expression
traversing this link navigates from instances of Cp to one
or more instances of Cy. When fragmenting Cp we should
take in account the fragmentation of C. We want to place
in the same fragment of C, objects aggregating instances
from a fragment of C,.. Objects of a fragment of Cp should
aggregate as much as possible objects from the same
fragment of Cy.

Let {F;, ...Fx} be the fragments of Cy. We denote by
Agg(0, F)={0"| 0" eF, O;aggregates 0" }.

Given the set of fragments for C,, we define the
attribute-link induced object-condition vectors for derived
fragmentation as ad; = (ady, ady, ..., ady), where each
vector component is expressed by the following formula:

ady = sgnQAgg(Oi,F }-)D @)

For an object O;elnst(Cp) and a fragment F; of Cy, ady
is 1 if O; is linked to at least one object of F; and is 0
otherwise.

Given the set of fragments for Cj, we define the
attribute-link induced characteristic vectors for derived
fragmentation as wd; = (wdy, wdp, ..., wdy), where each
vector component is expressed by one of the following
formulas:

. |4g2(04, F )
!
| 4e2(01.F) <
Orelnst(Cy)
Oy e Inst(Cy) |
{sgnQAgg(O,' ’Ff)l): sgnQAgg(O,-, Fj )l) €]
"= Unst(Cy)|

w ; gives the number of objects in fragment £; of class Cy
linked to O, divided to the number of objects in fragment
F; linked to instances of Cp. Two objects O; and O,
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aggregating the same proportion of objects in F; will be
candidates to be placed in the same fragment of Cp.

Each wzi,- componernt gives the percentage of objects in
Cp that aggregate in the same way as O; objects from F,.
Two objects O, and O, are said to aggregate in the same
way F; if they are both either linked or not linked with
objects from F. According to the second criteria, two
objects are candidate to be placed in the same fragment of
Co in respect to F; if they are both related in the same way
to Fj.

Tile attribute-link induced characteristic vectors for all
objects of a class Cp will be expressed using only one of
the two criteria.

Usually, the fragmentation of a class Cp is performed in
two steps: primary fragmentation, according to query
conditions, and derived fragmentation, according to the
fragments of the member or owner classes. We merge the
two phases into one single step capturing the semantic of
both primary and derived fragmentations. For this we unify
the characteristic vector and the attribute-link induced
characteristic vectors for each object O, of the class Cp and
we obtain the extended characteristic vector.

If the class Cp is linked with classes Cay,Cazz s .-, Carp »
the extended characteristic vector we; for object O; €
Ins(Cg) is obtained by appending the attribute-link
induced characteristic vectors of Cuy ,Cap ,...,Cap to the
characteristic vector of O;,

The extended object-condition vector ae; for an object O;
is obtained in the same way by appending its attribute-link
induced object-condition vectors to its object-condition
vector.

We denote by EOCM(C) and ECVM(C) the extended
object-condition and characteristic matrices for class C.

Similarity between objects
The aim of our method is to group into a cluster those

objects that are similar to one another. Similarity between
objects is computed using the following pseudo-metrics:

L
Z we g X We i
k=1

I T

k=1 k=1

cos(wei,wej):

n
dyy(ve;, wey) = ¥ Jwey—wep ©
k=1

Given two objects O; and Oy, we define two similarity
measures between them in (7):

simgos (0;,0;) = cos(we;, we ;)
. dyr(wej, we ) (7N
srmM(OI-,OJ:}—W

Manhattan similarity is well defined for every pair of
object-condition or characteristic vectors. The cosine
similarity, however, is not defined for every two object-

condition vectors. For extended vectors that have all
components zero the cosine similarity measure is not
defined. However if we look at the semantic of the
characteristic vectors we can see that all components zero
means that the object is not returned by any of the
application queries and does not refer other objects. It can
be referred, however, by other objects.

We should note that all characteristic vectors have
positive coordinates by definition.

III. HIERARCHICAL AGGLOMERATIVE
FRAGMENTATION

We apply the same algorithm we have used to fragment
classes with simple attributes and methods ([12]).

Algorithm HierachicalAggFrag is

Input: Class c, Inst (C) to be
fragmented, the similarity function
sim:Inst (C)xInst(C)->[0,1],

m=|Inst(C) |, 1<k< m desired number of
fragments, EOCM(C), ECVM(C).

Output: The set of hierarchical
clusters F={F,,..,F}
Begin
For i=1 To Inst(C) do F.={0,};
F:{Fl,..., Fm};
While |[F|>k do
(F,.,F,) :=argmax(F ,F) [sim(F_,F )] ;
Foo=F JF g
BeB={B., B bl Bl
End While;
End.

us Tt

Fig. I. Algorithm HierachicalAggFrag

The main part of input vector we; quantifies the way
object O; satisfies predicates in Pred(C) with respect to the
way all other objects satisfy those predicates. The extended
part of the vector quantifies the way an object O;
aggregates/relates to objects in clusters of the mernber
classes. At each iteration the algorithm chooses the two
most similar clusters and merges them into a single cluster
(argmax(F,, F)[sim(F,,F,)]). As similarity between two
clusters F, and F,, we consider the average similarity of all
pairs of objects:

D D sima;,by)

aeF, bjcF, (8)

N AR
u v

At the end of the algorithm we always have k clusters
representing the class fragments.

IV. RESULTS AND EVALUATION

In this section we illustrate the experimental results
obtained by applying our fragmentation schemes on a test
object database. Given a set of queries, we first obtain the
horizontal fragments for the classes in the database;
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Fig. 2. The database class hierarchy

afterwards we evaluate the quality and performance of the
fragmentation results,. We should note that the order in
which classes are fragmented is significant as it captures
the semantic of query path expressions into the
fragmentation process [13].

The sample object database represents a reduced
university database, The mheritance hierarchy is given in
Fig. 2 and the aggregation/association graph is shown in
Fig. 3. The queries runming on the classes of the database
are given bellow:

g; = (Grad, Faculty. Dept.Student,
Grad.Supervisor.OrgUnit.Name in (“ProgrMeth”, “InfSyst™) );
g> = (UnderGrad, Faculty.Dept.Student, UnderGrad.Dept.Name
like “C8%” and UnderGrad.Grade between 7 and 10}
g3 = (UnderGrad, Faculty Dept.Student, (UnderGrad Dept.Name
like “Math%” or UnderGrad.DeptName like “CS%”) and
UnderGrad.Age()>=24)
g4 = (Researcher, Doc.Person, Researcher.count(Reasercher.doc)
22)
gs = (Prof, Faculty.OrgUnitEmployee, Prof.OrgUnit.Name in
(“ProgrMeth”, “InfSyst”) and Prof.salary>=40000 )

s = (Prof, Doc.Person., ProfPaper.Publisher in (“IEEE” ,
“ACM?™) and Prof.Position="prof”)
g7 = (TechReport, Doc, TechReport.ycar>1999)
gg = (Set(Student.Dept), Person, Student.Grade<5)

= (Employee, Person, Employee.salary>35000)
q19= (Grad, Person, Grad.count(Grad.Paper)>=1)
gq,; = (Student, Person,Student. Dept. Name like “C8%")
q,2= (Student, Person,Student.Dept.Name like “Math%”)
g3 = (Staff, Person, Staff.salary>12000)
g14 =(Person, Person, Person.Age()>30)

In Fig. 3 the links between Doc and Person should be
inherited by all subclasses of Person and Doc. This is
graphically represented in the figure by the dotted arrows.
Similar inherited links are present for other classes in this
graph (not represented here). The motivation for
aggregation/association inheritance is presented in [13].

For measuring the fragmentation quality we determine

‘ <><> K_/(’rgu“b

TechReport
Employee
Student
B /,/ wPerson
Grady: N
\,“ﬂPaper Root
UnderGrad
Prof  Researcher Staff

Fig. 3. The database aggregationfassociation graph

the cost of remote accesses and the cost of local irrelevant
accesses in each fragment. In order to calculate the access
cost to the fragmented database we need to allocate the
fragments to the nodes of a distributed system. The cost
formulas are:

PE(C) = EM” + ER? 9)
M T ;
EMP ()= freg? *IAcci,l*{l —I‘T—;‘—]J (10)
i=l t=1 !
ER? O)= me ZZﬁ‘eq“ IACC,,|*I I rl} (1)
s=1 i=1

The EM term calculates the local irrelevant access cost
for all fragments of a class. ER calculates the remote
relevant access: cost for all fragments of a class. Accy
represents the set of objects accessed by query ¢ from
fragment F;. freg,, is the frequency of query f running on
site 5. In (10) s is the site where F; is located, while in (11)
s is any site not containing F;. M is the number of clusters
for class C, T is the number of queries and S is the number
of sites [12].

The fragmentation is better when the local irrelevant
costs and the remote relevant access costs are smaller.
Each term of PE calculates in fact the average square error
of these factors. Globally, PE measures how well
fragments fit the object sets requested by queries.

Using the given query access frequency and other input
data, the fragments above are allocated to 4 distributed
sites. We use a simple allocation scheme that assigns
fragments to sites where they are most needed. Query
frequency at sites is presented in TABLE 1.

We qualitatively compare the hierarchical fragmentation
variants in Fig. 4. M1 conforms to eqn (3) while M2
conforms to eqn (4) for expressing derived fragmentation.
In Fig. 5 we compare our methods with a fully replicated
database, and a centralized database allocated on one of the
sites.

TABLE 1. Access Frequencies of queries at distributed sites

Freq(q,s) | S1 | S2 | 83 | S4
Ql 0 |10 ][5 |20
Q2 0 105 |25
Q3 20 [0 |15 [ 10
04 15 [10]5 [0
q5 25 [20 [0 |20
96 30 [0 |20 | 10
q7 30 |25 [0 | 10
98 100 [0 |10
99 20 [ 20 | 10 [ 0
q10 15 [25 |0 |0
qll 5 |10 [s |o
ql2 0 |0 [0 [10
q13 510 o [5
ql4 20 5 [0 |0
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Fig. 4. Comparative quality measures for fragmentation variants

Fig. 6 compares the fragmentation performed both
primary and derived, with primary only fragmentation.
Labels starting with P (e.g. P-Cosine) denote the primary
only fragmentation methods. It can be seen that exploiting
class relationships in derived fragmentation improves the
fragmentation quality.

Experimental results show that both cosine and
Manhattan similarity measures distinguish objects that do
not respect predicates in the same way, but the
differentiation refinement has different granularity for each
measure. As a consequence, resulting fragments are not
always similar for the same input data. Also, the
experiments show that no measure behaves optimally in all
cases.

Statistically the Manhattan measure applied on object-
condition vectors performs better than the other measures.
In particular cases however the Manhattan measure is
over-performed by the other measures. This is because in
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Fig. 5. Global PE values for all our methods, a fully replicated and a
centralised database version.

289 289

225 225

PE values

Fig. 6. PE values for complex attribute fragmentation and primary
fragmentation

the hierarchical algorithms the order of handling
clusters/objects has a strong influence in fusing clusters. A
misplaced decision at early stages of the algorithm is
carried on trough the end, accumulating more errors.

The hierarchical clustering method does not always
perform optimally due to the fact that once a step is done it
can never be undone. This rigidity is useful in that it leads
to smaller computation costs by not worrying about
combinatorial number of different choices. However, a
major problem of such techniques is that they cannot
correct erroneous decisions.

V. CONCLUSIONS AND FUTURE WORK

We present in this paper an application of Al clustering
methods to object oriented horizontal fragmentation of
classes with complex attributes. We use the hierarchical
clustering algorithm with two similarity measures to
fragment a set of class instances with respect to user
requirements. As with the case of classes with simple
attributes we have identified a weak point: the incapacity
of the algorithm to reconsider wrong cluster fusing
decisions. The unpredictable character of propagating
errors makes this algorithm inadequate to compare the
proposed similarity metrics. Nonetheless the presented
method proves to be effective in practice. We aim to apply
new clustering techniques in order to avoid the undesirable
effects of the hierarchical method. We also investigate the
modelling of complex methods and their influence on class
fragmentation.
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