Denotational prototype semantics for a simple CSP-like language

Eneia Todoran!

Nikolaos Papaspyrou?

Kalman Pusztai'

Technical University of Cluj-Napoca
department of computer science
Baritiu Street, 28, Cluj-Napoca

Romania

{Eneia. Todoran, Kalman. Pusztai } @ cs.utcluj.ro

?National Technical University of Athens
Department of Electrical and Computer Engineering
Polytechnioupoly, 15780 Zografou, Athens
Greece

nickie@softlab.ntua.gr

Abstract — This paper shows that, by using the *continuation se-
mantics for concurrency” (CSC) technique (recently introduced by
us), denotational semantics can be used not only as a method for
formal specification and design, but also as a method for concur-
rent languages prototyping. In this new approach, a denotational
function uses continuations to produce incrementally a stream of
observables, i.e. a single execution trace, rather than an element of
some powerdomain construction. By using a random number gen-
erator, an arbitrary execution trace is chosen, thus simulating the
non-deterministic behavior of a real” concurrent system. In this
paper we employ classic (cpo-based) domains in developing a deno-
tational prototype semantics for a simple concurrent langnage pro-
viding constructs for CSP-like synchronous communication. The
CSC technique plays the main role in the design of the denotational
medel.

I. INTRODUCTION

In software engineering, a prototype is an initial version of
a system which is used to demonstrate concepts, try out design
options and, generally, to find out more about the problem and
its possible solutions. Ideally, a prototype serves as a mecha-
nism for identifying software requirements. Rapid development
of the prototype is essential so that costs are controlled and users
can experiment with the prototype early in the software process.

Denotational semantics is a well-known method for formal
specification and design of computer languages; its main char-
acteristic is compositionality. It is easy to use a functional lan-
guage and classic denotational techniques to produce rapidly
compositional prototypes for various (aspects of) sequential
programming languages (we only mention here the early work
of Peter Mosses on the use of denotational descriptions in com-
piler generation [7,8]. However, to the best of our knowledge,
denotational semantics have never been used systematically as
a prototyping method for concurrent languages, and all our at-
tempts to get a satisfactory solution to this problem by using
only classic compositional techniques have failed.

This paper shows that, by using the "continuation seman-
tics for concurrency™ (CSC) technique - recently introduced by
us [13, 14] - denotational semantics can be used not only as a
method for formal specification and design, but also as a method
for compositional prototyping of concurrent programming lan-
guages. In this new approach, a denotational function uses con-

319

tinuations to produce incrementally a stream of observables, i.e.
a single execution trace, rather than an element of some pow-
erdomain construction!. By using a random number genera-
tor, an arbitrary execution trace is chosen, thus simulating the
non-deterministic behavior of a real” concurrent system. We
call such a denotational model a denotational prototype. The
immediate implementation of such a denotational model in an
appropriate functional language (such as Haskell [10]) is a com-
positional interpreter for the concurrent language under study.

The CSC technique was introduced in [13] using metric se-
mantics [2]. In this paper we employ classic (cpo-based) do-
mains and continuous functions in developing a denotational
prototype semantics for a simple concurrent language, pro-
viding constructs for parallel composition and CSP-like syn-
chronous communication [4, 5]; the CSC technique plays the
main role in the semantic design. We emphasize that, when the
CSC technique is used in this mathematical framework no com-
munication attempts or silent sleps need Lo be produced as final
yields of a denotational semantics. Throughout this paper, we
rely on the mathematical apparatus and notation in [12, 6].

IT. SYNTAX AND INFORMAL EXPLANATION

‘We consider a simple CSP-like language, called Logp. The
syntax of Lcogp is given below in BNF. We assume given a
set (v €)Var? of (numerical) variables, a set (e €)Exzp of
numerical expressions, a set (b €)BEzp of boolean expres-
sions, a set (¢ €)Chan of communication channels, and a set
(z €)PVar of procedure variables (or procedure identifiers).

Definition 1 (Syntax of Logp)
The set (s €)Stmt of statements in Logp is given by the fol-
lowing grammar:

su=skip|a;s|ifbthenselses| s|s
| call(z) | letrec = be s in s,

where: an=v:=e| write(e) | cle | c?v

'As shewn in [13], the CSC technique can be used without difficulty to
produce elements of appropriate powerdomain constructions, but this is not the
subject of the present paper.

“In this paper, the notation (z, , ... €)X introduces the set X with typical
variables x, y/, Whenever we use a set in a conlext where a domain is needed,
we assume it is equipped with the discrete order.

We assume that numerical and boolean expressions have no
side effects and their evaluation always terminates. For simplic-
ity, variables are only of numerical type (however, variables can
appear in boolean expressions such as: vy < vz -+ 10).

Lesp provides assignment (v €), a primitive for writ-
ing the value of a numerical expression at the standard output
file (write(e)), two constructs for synchronous communica-
tion (cle and c?v), a null command (skip), sequential com-
position (in the form of action prefixing: @; s), a conditional
command (if b then s else s), parallel composition (s || s),
and recursion. The constructs ¢le and ¢7v are as in Occam [9].
Synchronized execution of two actions ele and ¢?v, occurring in
parallel processes, results in the transmission of the value of the
expression e along the channel ¢ from the process executing the
cle statement to the process executing the ¢?v statement. The
latter assigns the received value to the variable v.

IIT. SEMANTICS

Numerical expressions evaluate to natural numbers (&
N), and boolean expressions evaluate to boolean values (€
Bool = {true, false}). The meaning of expressions is defined
with respect to a given domain State of states:

(o €)State = Var — N.

The following valuations are assumed given:
E]-1 : Exp — (State — N),
B[] : BEzp — (State — Bool)

and we let £ range over (£ €) State — N.

According to our design decision, the denotational seman-
tics should produce arbitrary execution traces of concurrent pro-
grams. The final yield of the denotational semantics is a se-
quence of "observables” (in our case natural numbers € N),
which is an element of the following (recursively defined) do-
main:

O = ({e} + {0} + (N x O))1,

where ¢ is the empty sequence, and 0 is a constant that denotes
deadlock. O is a lifted domain; the bottom element represents
a non-terminating computation that produces no observable ef-
fect.

To simulate the nondeterministic behavior of a "real” concur-
rent system, the denotational mapping uses a (pseudo-)random
number generator; random numbers are natural numbers. We
put (p €)R = N and we assume given an initial random num-
ber po(€ R) and a mapping® 7 : R — R that produces a new
random number from a given one.

The following domain is used for the denotational semantics:

(¢ €)D = Cont — R — State — O,

where Cont is the domain of continuations which, in the CSC
approach, is a configuration (in simple applications a multiset)
of computations (i.e. of elements of type D). Here, we imple-
ment this concept as follows:

3 A very simple example of such a pseudo-random number generator can be
defined as follows:

r(p) = (25173 % p+ 13849) % €5536,
where pp = 17480.

320

(y €)Cont = Id x Kont
(9 €)Kont = Id — Proc
(p €)Proc= Sched x D

The elements of the domain Id are process identifiers; they are
auxiliary entities that can be used in the representation of con-
tinuations in the CSC approach. For an appropriate semantic
modeling /d should contain an infinite number of elements. In
the present setting it is convenient to put (v €)Id = N.

An element @ € Kont is a multiset of processes, where each
process is a pair containing some scheduling information and a
computation (of type 7). A continuation v = (7,49) € Cont
implements a dynamic pool of processes; only elements 9(z)
for v < 7 are handled by the semantic functions, and 7 always
points to the next free location in .

The domain Sched is defined as follows:

(¢ €)Sched = {null} + {proc} + Snd + Rcu,

where
Snd = Chan x {State — N), and
Rev = Chan x Var.

For easier readability, we denote typical elements {c, £) of Snd
by cl¢, and we denote typical elements (¢, v) of Rew by c?w.

‘Whenever convenient, for any continuation v = (1,9) €
Cont we will use the following abbreviations:

o A" 90

o () "2 let (s,4) = 9(s) in &

not.

o (Yltar—pi] ol tn = Dpa)
@@ u=pi| | tar pa))

We see that, in order to get a good mathematical foundation
for our design, we need to solve the following domain equation
(in which I'd, Sched and E do not depend on D):

D = (Id x (Id — (Sched x D)) — E,

where E = R — State — O is a domain with least element
(Lg = Ap.2o.Llp), which means that DD also has a least ele-
ment; more precisely Lp = Ay.Lg.

Finally, to deal with recursion we define semantic environ-
ments as follows: (n €)Env = PVar — D.

‘We emphasize that, apart from O, DD, Proe, Cont, K ont and
FEnwv, all domains that are employed in the semantic construc-
tions given in sections III and IV are discretely ordered.

Continuations play a central role in the CSC approach
[13, 14]. Moreover, in this paper we show that the information
contained in continuations suffices for all process scheduling
purposes, including process synchronization, termination and
deadlock detection. In the sequel, we only present a parficular
solution to the problem of designing such a "pure” continuation-
based approach to communication and concurrency using clas-
sic domains and continuous functions.

We begin by defining the predicate terminates : Cont —
Bool that formalizes the intuitive notion of termination. We put
terminates(0,9) = true, and, when 0 < T:

terminates(t, 9) = Nge,oq isnull(9(1)),
where the predicate isnull : Proec — Bool is given by:
isnull(c, ¢) = (¢ = null).

It is easy to prove the continuity of {erminates, but we defer
the issue to section IV,

For scheduling purposes, it is also convenient to introduce the
following domain:

(m €)II = {nil} -+ Id + Id x Id x (State — N) x Var.

We assume given a continuous mapping sched : {Cont X R) -
IT that uses a random number p(€ R) to model a random choice
of a process or of a pair of communicating processes in a con-
tinuation v{&€ Cont). More precisely, the mapping sched(-y, p)
behaves as follows:

o it either chooses at random a process identifier + € I'd such
that y[e] = (proc, ¢) for some ¢ € D, or

it chooses at random a pair of process identifiers ¢1,t2 €
Id such that y[e1] = (el&, ¢1) and y[ta] = (c?, ¢ha), for
some ¢ € Chan, £€(€ State — N) and v(€ Var), in
which case the components v and £ (of the distributed as-
signment that is performed upon synchronization) are re-
turned together with the process identifiers ¢ and ¢, or,

when none of the above choices are possible, it returns nil,
which signifies deadlock detection.

Section I'V offers an example of such a function sched.
We are now prepared for the definition of the denotational
semantics.

Definition 2 {Denotational prototype semantics for Lasp)
(a) We define k(€ D) as follows: |
s = fiz(K),
with K : D — D given by:
K (k) {(v)(e){o)

if terminates(y)
if —terminates(y) and
sched(ry, p) = nil

(&) (v | e = v[d) (rp)(o),
if =terminates(y) and
sched(y,p) =¢
k(v u = qlull e a]) (o)
if —terminates(y) and
L sched(y, p) = (11,12, €,v)

€,

5,

not.

where we have used the following notations: (’gr:-’qﬁ)

(proc, ¢), m— et (null,¢), and o’ = (g | v — £o).

(b) The denotational semantics [-] : Stmt — Env — D is
defined as follows:

[skip | pvpo = rypo
[ve=-e;s]nypo=

s{(proe, [s17) = 7p(o] v Elefo)
[write(e) ; s|nypo =

(Ele] o, w{{proc, [s]n) == 7)po)

32]

l[cle; s)mypo = w((E[e], [s]n) =
[c?v; s]nvpo = k((ctv, [s]n) =
[if b then s; else s3] nypo

| lsilnvypo, if Blb]o = true
“ | [s2]nvpo, if B[b]o = false

[s1l s2]nvpo
[siln((proc, [s2]m) == 2)(rp)o,

v)oo
Y)po

if p%2=0
[s2]n((proc, [s1]m) = ¥)(rp)a,
if p%2=1

[call(z) [nvpo = n{z)vpo
[letrec z be 3 in s2] pypo =

[s2] (nlz = fiz(A. [51] (n]z — ¢)))po

where % is the modulo operator and we have used the no-
tation:

p = (8,9)

with newld(s) = o+ 1, for any p € Proc and for any
v = (%,9) € Cont.

not.

(newld(7), (¥ |T— p))

(¢c) Moreover, we can define a mapping D[-] : Stmt —
State — O that computes a possible execution trace for
any statement evaluated in any state as follows:

Dfs] = [s]n0(0,%0)p0

where 1g and g = (0,90) are “initial” values for the se-
mantic environment and continuation, and pg is the initial
random number; remark that terminates(vyo) = true, but
there is no need to impose constraints on 1y or V.

Of course, in the definition above fiz is the classical
fixed point operator*. It is not difficult to see that (provided
terminates and sched are continuous) K is a continuous map-
ping and thus « is well-defined and continuous, and [-] is also
continuous.

A distinguished feature of our semantic model consists in the
fact that, the final yield of the denotational model is not an el-
ement of some powerdomain construction but rather a single
execution trace. Moreover, the denotational semantics does not
only depend on "traditional arguments” - such as sernantic envi-
ronment, continuation, and state - but also on a random number,
that is nsed to simulate the nonterministic behaviour of a "real”
concurrent system, by choosing at random an execution trace.

IV. A PROCESS SCHEDULER WITH RANDOM CHOICE

The specification that we gave in section III does not deter-
mine a unique function sched : (Cont x R) — IL In this
section we present a possible design for sched.

All operations involved in process scheduling are essentially
iterations on continuations. The basic idea is that, given a con-
tinuation y = (Z,9), we need to process somehow the infor-
mation contained in all elements ¥(¢), for 0 < ¢ < 7. In fact,
the type of J is Id — Proc, but we only need to be able to pro-
cess various derived information embodied in functions of types

“If f : X — X is a continuous mapping and X is a domain with least
element 1 x then fiz : (X — X) — X is defined as follows: fix(f) =
Llicw Fi{Lx). Itis well-known that fiz is a continuous mapping, 2nd that
Fix(f) is the least fixed point of f.

id — Bool, Id — N, or Id — IL Tt is thus convenient to de-
{ine iterators that can handle functions f of type (f €)Id — A,
for any discretely ordered domain A. Let thus A be discretely
ordered; we define iterq ¢ (Id x ((A x A) — A) x (Id —
A) x A) — Aas follows:

itera(e, op, fra)

X

The well-definedness of iter 4 follows by induction. Also, con-
tinuity of ter4 follows easily when A is discretely ordered®,
This definition gives us:

a, ife=0
op(f(e—1),itera(t — 1,0p, f,a)), if >0

iter a(0,op, f, a)
?:teTA(lr op, fa CL)
itera(2,op, f,a)

a
op(f(0), a)
Op(f{1}7 op(f(U),a,))

and so on. In the sequel, we will employ the following notation
which seems often more readable:

0py: a(f)

The mappings op,’4(f) provide us with useful abstractions.
For example, the predicate terminates (introduced together
with the predicate isnull in section IIT) can be expressed as fol-
lows:

Il

not.

if&'f’A(L, op, fs Cl.)

terminates(T,®) = At ve oot (M-isnull(9(1))).

We also use these iterators in the definition of the process
scheduler function sched : (Cont x R) — II. sched(,p)
computes the number of processes and the number of synchro-
nization pairs in a given continuation y € Clont, and next it uses
this information to choose at random - i.e. by using the random
number p € R - an element of type IL.

sched(v,p) = let np = [T, ns = |7]° in
if ((np +ns) = 0) then ngl
else let ¢ = p%(np +ng) in
if (< np) then ithp{y,%)
else ithg(y,7i —np)

[-|?,1-| : Cont — N are cardinal computing functions defined
as follows:

|z, 9)]P = Fom(Mz(proc(e, 9)))
17 915 = Fom (M- Fom(Aa.2(syne(ey, 12,9))))

where the mappings proc : (Id x Kont) — II and sync :
(Id x 1d x Kont) — Il are given by:

if 9(e) = (proc,)
otherwise

L?
nil,

proctis) = {

3In our case, A can only be Bool, N or [T, which are all discretely ordered,
and Id is also discretely ordered. It is easy to see that the mappings iter 4 are
indeed continuous, becavse:

e if Aand B are discretely ordered domains thenso are Ax B,and A — B
(and A + B), and

e if B is any domair, aud A is discretely ordered, then any function f :
A — B is continuous.

syne(iy, t2,9)

{Ll, LQ,{,U), if 13(1,1) = (C]_.'é., (f)l)) and
Pez) = (2?0, ¢h2), and

Cp =2
nil, otherwise
and z : T — Nis:
em 0, ifr=mnil
ST 1, otherwise

One can easily check that proc, sync and isnull (isnull was
introduced in section II) are monotone mappings®, By using
the fact that, if A is any domain and B is discretely ordered then
any monotone function f : A — B is continuous, it follows that
proc, sync and isnull are continuous mappings. z : IT — N is
also continuous; in this case it suffices to see that I1 is discretely
ordered.

The mapping ithp : (Cont x N) — II searches throughout
a space of processes, and the mapping iths : (Cont x N) —
IT searches throughout a space of pairs of processes that can
synchronize. Both ithp(y,1) and ithg(vy,?) return a reference
(more precisely an element of type II) to the element that is on
the #’th position in the corresponding search space. The search
is performed with respect to the natural ordering on I'd = N,
respectively with respect to (a relationship that is derived from)
the lexical order on I'd x Id. The definitions for ithp and ithg
are given below,

1.th'P((33 "9)1 2‘) = @ni-,f:ﬂ()\nﬂ.‘]rp)
iths((5,9),4) = Opy(Aer- Bp(Mia-7s))

where we used the following abbreviations:

np = if (posp(t, (7.7)) = 1)
then proc(e, &)
else nil
and
g = if (poss(ta, g, (3,7)) = 1)

then sync(ey, ia,d)

else nil

The auxiliary binary operator & : (IT x II} — TI simply helps
in selecting the first non-nil element in a sequence;

if wy = nal
otherwise

?TZ!
@(ﬂ-lsﬂQ) - { 71,
Finally, for any continuation -y, the operator pos p(¢,) deter-
mines the position of the process with identifier ¢, and the op-
erator posg(i1, L2,) determines the position of a pair of pro-
cesses that can synchronize and have identifiers ¢; and ¢3. In
the first case, the position of the process with identifier ¢ is
determined with respect to the natural ordering on Id = N,
and we compute it by counting the number of processes with
identifiers ¢/ < ¢ The definition of the auxiliary mapping
posp : (Id x Cont) — N is as follows:

To show this one uses the fact that, if (s1,¢1) T (g2, ¢2) then ¢1 = <2
(for every (<3, ¢1), (s2,#2) € Proc); this is so because 51, ¢z € Sched and
Sched is discretely ordered.

posp(t, (T,9)) = Fon(A z(proc(, 9)))

For the definition of posg : ({d x Id x Cont) — Id we con-
sider the lexical order. According to the lexical order, {1}, t5) <
{11, t9) if either ¢4 = 1 and ¢h < 1g, or 1) < ¢q. But, for a given
continuation v = (7,4), we only consider pairs (¢1,2) such
that ¢; < 7 and o < 7; this means that, we have to consider a
relationship over Id x Id which (for convenience we also de-
note by ><’, and which) is defined as follows: (21,15) < (1,2)
if either ¢f = ¢y and 1§ < 13, or ¢{ < 1y in which case we must
have ¢5 < . The definition of posg is:

poss(t1, ta, (T,9)) =
(+of§(3\-’»'z-2(sync(gl,;,5,13)))) i

(om0 Fou g z(syne(cs, 5, 9))

V. SOLVING OUR DOMAIN ECUATION
‘We show how to solve an equation of the form:
D:(El X(EI—)(EQXD)))%E,

where F is a domain with least element’, and £y, £ are arbi-
trary domains. In solving this equation we follow the approach
(and use the notation) in [12].

We can define Dy = 0 and we put

Dy = (Ei x (By - (Ba x D'L))) — E.

Following [12], we want to build a co-limiting cone of domains
and embeddings, but we need to ensure that the corresponding
projections are total. Obviously, there is a unique embedding of
Dy into D1, but the projection corresponding to this embedding
is not total. However, we note that D)1, which is

Dy=0—F,

has exactly one element: the mapping with empty graph; we
denote this element by dp. Next, we consider Dy, which is

D2 = (E1 X (E1 i (Eg X DI))) — B

We can define the embedding f1 : D1 < Dy as follows:

fAld) =ML {(=1p,)

where -y ranges over {y €)E) x (Ey — (Ez % Dy)). The cor-
responding projection

f(d) = do

is total. By using the framework in [12] we infer that

(forany d € D»)

fir1 = (idp, x (idg, 5 (idg, x £;))) > idg

?In the original equation B = R — State — O. The least element of this
domain is Ap.Aa.Lo.

is a good definition for all 7 > 0. Indeed, idg,,idg, and idg
are identity functions, and one can easily check by induction
that the projection 7 corresponding to f; is total for any i € w
(ff is total, and from the fact that £ is total it follows that
fE | is also total).

We can then construct the co-limiting cone from the w-
sequence of domains and embeddings

fi1

T b fi i
D1<11I)2<]2 Q Dy < Diyq 3.

as in [12] and obtain a domain D) such that

D= (El x (E; — (Eg X D))) — E.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have presented a denotational prototype
semantics for a simple CSP-like language. The denotational
model was designed by using the CSC technique [13, 14]. We
worked in a category of complete partial orders and continu-
ous mappings [11, 12, 6], and we used the notation in [12]. We
showed that, when the CSC technique is employed in this math-
ematical framework no communication attempts or silent steps
need to be produced as final yields of a denotational semantics.
This gives rise to a “pure” continuation-based approach to com-
munication and concurrency in which all scheduling tasks can
be modeled as operations manipulating continuations.

The work given in this paper suggests that, by employing the
CSC technique denotational semantics can be used as a gen-
eral method for concurrent languages prototyping. We plan to
validate this idea by employing the CSC technique in the de-
velopment of denotational prototype models for more complex
concurrent languages, including POOL [1], and Concurrent Ide-
alized Algol {3]. For the CSC technique, we also plan to study
whether there exists a formal relationship between denotational
models that yield elements of powerdomain constructions and
corresponding denotational (prototype) models that yield sin-
gle arbitrary execution traces. Such a theoretical study could
be accomplished both within the classic domain theory [11] and
within the mathematical framework of complete metric spaces

[2].

VII. REFERENCES

[11 P. America, "Issues in the design of a parallel object-
oriented language,” Formal Aspects of Computing, vol. 1,
1989, pp. 366-411.

[2] J.W. de Bakker and E.P. de Vink, Control flow semantics,
MIT Press, 1996.

[3] S. Brookes, "The essence of parallel Algol,” Information
and Computation, vol, 179, no. 1, 2002, pp. 118-149.

[4] C.AR. Hoare, "Communicating Sequential Processes,”
Communications of the ACM, vol. 21, 1978, pp. 667-677.

|51 C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall, 1985,

[6] J.C. Mitchell, Foundations for Programming Languages,
MIT Press, 1996.

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

P.D. Mosses, Mathematical semantics and compiler gen-
eration, Ph.D. thesis, Oxford, 1975.

P.D. Mosses, SIS, Semantics fmplementation System: Ref-
erence manual and user guide, Tech. monograph MD-30,
Aarhus Univ., 1979.

INMOS Ltd., Occam programming manual, Prentice-Hall,
1984.

S. Peyton Jones and J. Hughes (editors), Report on
the programming language Haskell 98: a non-strict
purely functional language, Yale Univ., Tech. Report
YALEU/DCS/RR-1106, 1999.

G.D. Plotkin, The category of Complete Partial Orders: a
tool for making meanings, Lecture notes for the Summer
School on Foundations of Artificial Intelligence and Com-
puter Science, Pisa, 1978.

R.D. Tennent, Semantics of Programming Languages,
Prentice-Hall, 1991,

E. Todoran, "Metric semantics for synchronous and
asynchronous communication: a continuation-based ap-
proach," in Proceedings of FCT’99 Workshop on Dis-
tributed Systems, Electronic Notes in Theoretical Com-
puter Science (ENTCS), vol. 28, Elsevier, 2000, pp. 119-
146.

E. Todoran and N. Papaspyrou, "Continuations for parallel

logic programming," In Proceedings of 2nd International
ACM-SIGPLAN Conference on Principles and practice of
Declarative Programming (PPDP’00), ACM Press, 2000,
pp. 257-267.

324

