DTNLite: A Reliable Data Transfer Architecture
for Sensor Networks

Sergiu Nedevschi
University of California, Berkeley
sergiu@cs.berkeley.edu

Abstract— We present a network architecture, DTNLife,
for reliable message delivery in sensor networks facing prob-
lems of high mobility, frequent disconnections and unreliable
nodes . It is based on the DTN(Delay Tolerant Networking)
architecture and its main features are asynchronous mes-
sage delivery combined with custody transfer on an overlay
network of sensor motes. We present an implementation of
this architecture for the TinyOS platform targeting data
collection applications. We also explore the various issues in
reliable custody transfer and investigate the particular issue of
querying and selection of custody hops in detail. Our simulation
results show that selection criteria that use energy or delay
as metrics are able to profitably exploit asymmetries in the
network.

1. INTRODUCTION AND MOTIVATION

Wireless sensor networks are a cost effective, dis-
tributed solution, providing sensing and computing solu-
tions in various environments where conventional networks
are impractical. This paper addresses the design of system
support for reliable data delivery in sensor networks facing
challenges such as sparse connectivity, high degree of
mobility, flaky nodes and unreliable links. However the key
questions are why reliability, why challenged sensor-nets,
and why reliability in challenged sensor-nets?

Unlike traditional networks, reliability in sensor net-
works is still an open research question. There has been
little amount of work on the design of reliable delivery pro-
tocols, and most of the existing solutions are application-
specific. However, as sensor networks become ubiquitously
deployed, we can imagine a large class of applications
where reliable delivery is required. A good example is
network reprogramming of sensor nodes, where the reliable
delivery of every single byte of code is necessary. Reliable
and timely delivery of emergency events is another.

The majority of current solutions for sensor nets
assume high connectivity degrees, manageable mobility
and low error rates. However, few real environments can
have such well-controlled parameters, and providing these
properties requires large numbers of nodes, and important
energy consurnption. Covering extended sensing areas is
achievable by tolerating smaller node density, and main-
taining a long lifetime recommends small on-times. All
these are reasons for exploring solutions for challenged
networks,

II. RELATED WORK

In this section we provide a brief survey or related
work in the areas of reliahle data delivery in sensor and
delay tolerant networking.

344

Rabin Patra
University of California, Berkeley
rkpatra@cs.berkeley.edu

Efficient transport protocols to provide reliable data
delivery in sensor networks have been proposed in [9] and
[8].

In [8], authors introduce RMST, a transport pro-
tocol that provides guaranteed delivery and fragmenta-
tion/reassembly for applications that require them. RMST
is a selective NACK-based protocol that can be configured
for in-network caching and repair. Some number perform
message reassembly, issuing repair request to the previous
nodes in the path.

In [9], the Pump Slow Fetch Quickly protocol is pre-
sented, where each node performs a special type of message
reassembly. That is, nodes can immediately forward to the
next hop fragments if they are received in order. However,
as soon as they receive an out-of-order fragment, they issue
a repair request, and buffer the out-of-order fragment until
the missing fragment is obtained and relayed. Nodes are
thus performing fragment ordering. The repair requests
are answered by previous nodes in the 'path that use
fragment caches. PSFQ targets a small delay, comparable
to forwarding approaches, combined to the reliability and
small number of retransmissions specific to hop-to-hop
store-and-forward.

Delay Tolerant Networking is an emerging field that
attempts to develop a networking architecture{2] and phi-
losophy revolving around asynchronous message delivery
with custody transfer for networks that are subject to
long delays and/or frequent disconnections that rule out
contemporaneous end-to-end connections. The architecture
operates as an overlay above the transport layers of the
networks it interconnects, and provides key services such as
in-network data storage and retransmission, inter-operable
narming, authenticated forwarding and a coarse-grained
class of services. Some of the issues involved in the custody
transfer handshake and duplicate generation are discussed
in [3].

III. DESIGN DECISIONS

In this work, we explore achieving reliable delivery
using acknowledgments and retransmissions. The best pos-
sible solution is the one that makes the most efficient use
of retransmissions and storage(in volatile and non-volatile
memory). The end-to-end argument dictates end-to-end
acknowledgment as the only true answers for reliability.
However, adding functionality at the intermediary hops can
significantly increase efficiency.

Packets can be retransmitted at each hop, at some
number of intermediate hops, or only at the source. Each

packel can be acknowledged independently, or selective
acknowledgment approaches can be used.

However, traditional acknowledgment-based reliabil-
ity mechanisms exhibit several common difficnlties when
faced with unusual challenges. These challenges are not
exclusive, and usually happen simultaneously (e.g. discon-
nection and high round trip delay), however we will present
their effects one at a time:

e High round trip delay: We assume the round trip delays
between sources and destinations on the order of hours if
not days, mainly due to disconnections. In the end-to-end
acknowledgment schemes, the full message content needs
to be stored at the data source, until every fragment is
delivered to the destination. Since the round trip delay is
so large, the acknowledgments will arrive much subsequent
to the moment when data is actually delivered to the
destination, and data sources will thus have to store large
numbers of such messages; generation of new data may be
impaired,

e Disconnections: We assume end-to-end connected paths
between source and destination do not always exist, or they
might not exist at any single moment in time. As no stable
storage buffering is used, the node where the connected
path is interrupted will be overflowed with data it cannot
handle.

o Large messages: If the message size exceeds the avail-
able memory capacity, the packet reassembly cannot be
performed at the intermediary nodes.

o High mobility: High mobility leads to routing instability
and the underlying routing might not be able to maintain
updated state. If the end-to-end paths are long, the message
transfers might be frequently aborted especially if the links
are not always symmetrical.

Taking into account these problems, we propose some
mechanisms to address them, These ideas are inspired from
the mechanisms underlying the Delay Tolerant Networking
architecture presented in [2].

e Store-and-forward using stable storage: The mech-
anism is intended to alleviate buffer overflow problems
associated with disconnections. Since buffered messages
might be stored for long periods of time, buffers are likely
to grow beyond the node volatile memory capacity. More-
over, buffering using stable storage increases reliability, and
unreliable nodes cease to be a problem, since data is not
lost during power-downs and resets,

o Custody transfer as an allernative to end-to-end
reliability: Keeping a full copy of the data at the source
until an end acknowledgment is received comes with great
storage utilization penaltics. A possible solution is an
alternative reliability paradigm, called custody transfer.

A custody transfer refers to the acknowledged delivery of

a message from one hop to the next and the corresponding
passing of reliable delivery responsibility. In other words,
the custodian node, after storing the message in stable
storage, becomes responsible for its successful delivery,
and the previous custodian, which might be the source,
can delete its own copy.

IV. DTNLITE FOR SENSOR NETWORKS

This section discusses the design issues for implement-
ing a custody based reliable transfer mechanism(DTNLite)

for sensor networks and then presents an implementation
for the TinyOS platform. For a background on the Berkeley
TinyOS platform, the reader should consult [1].

The proposed mechanism is based on the abstraction of
message switching. Messages (or bundles) are transferred
on an overlay network formed of nodes that are ready to
perform store and forward functions. The actual node-to-
node bundle transfer between overlay nodes is done using
the custody transfer mechanism.

A. Design Issues

e Custody transfer with reliability: The most important
problem is the mechanism implementing the one hop trans-
fer of a bundle from one overlay DTNLite hop to another.
This is especially difficult since the bundles are application
data units(ADUs) which means they are usually larger than
the underlying network packets and have to be deliver in-
order. The underlying networking layer is also rudimentary
and ordinarily does not provide multiple hop reliability. The
available options include multi-path sending and packet
replication.

o Persistent storage management: Reliability demands
that the sensor network nodes persistently store bundles
until they are successfully able to delegate responsibility
to another node. The first requirement is for the nodes
to posses non-volatile storage such as flash. Making this
assumption, the easiest solution is to use database opera-
tions for writing and reading bundles. Unfortunately, sensor
motes are very resource constraied and they usually lack
full-fledged file systems. In such a situation we have to
make sure that all bundle writes are forced (flushed to
storage) before a custody transfer can be acknowledged
as completed. The flash storage system should be capable
of supporting some low level atomic operations that would
make sure that the record of stored bundles is consistent.
e Duplicate management: Since frequent disconnections
are assumed, complete elimination of duplicate bundles
is not possible. The simplest scenario where a duplicate
bundle can be created is when a custody transfer ac-
knowledgment is lost, resulting in both the sender and
receiver maintaining custody. In such situations we can
either assume a deliver ar least one model or need to
include some mechanisms to detect duplicates at the base-
station.

e Application awareness: This issue concerns the degree
to which applications should be aware of the network con-
ditions. Awareness is desirable because giving applications
the ability to adapt to changing network conditions can
increase the network’s efficiency. Solutions for long term
storage of data in sensor motes can be provided by using
mechanisms such as in-network aging and summarizing
and compression of data in case of communication chal-
lenges.

B. Architecture and Implementation

Considering the design issues for a generic custody
transfer framework, we propose a network stack architec-
ture for the TinyOS platform. The design is loosely based
on the DTN overlay architecture proposed in [2]. We have
particularly targeted our implementation for data collection

345

Send { Recelve Query Configyre DTN
Mapsagas Staws Optlons
= - r L. T
puNptEs | Store/ [EERGIR ARSI 3 SRR ERA
Retrleve b oo L g LAY ER A R o AR
Zees EmE TR

r
Sand / Raceive Send/feceiva

ReadWrite Fllas Buridles Accept/ Rejoct Cusjody
Custody Querfes / Responsas
3 i
MATCHBOX BUNDLE

TRANSFER
MANAGER

MULTIHOP
ROUTING

Send / Recaive Sand / Recsive
Pagkats

(

Fig. 1.

DTNLile architecture

applications where there is a central base-station. Nodes
generate data having the base station as the destination.
We choose to cover this particular case because the overlay
routing in DTNLite needs an underlying multi-hop routing
prolocol, and in this respect tree-based routing represents a
viable alternative. However, as generic multi-hop protocols
for any-to-any routing in sensor networks become available,
the architecture can be easily adapted.

Addressing is an important issue in disconnected net-
works, but we make the simplifying assumption that afl
nodes have a unique static address, and that all packets
share the same destination. Figure 1 presents the layering
of the important components of the proposed architecture.

1) Bundle Storage Manager: This component
(BundleStorageMgr) is responsible for providing
persistent storage for bundles. For the Berkeley Mica
motes, the fash(about 512K bytes) is the available
storage medium. We use the Matchbox file system([4]),
and its implementation for Mica motes. The Matchbox
filesystem uses atomic write operations for operating with
file meta-data, and provides support for data corruption
detection.

2) Bundle Agent: This component (BundleAgent)
corresponds to the overlay routing layer. The Bundle Agent
provides to the application an interface for sending and
receiving bundles. It is responsible for implementing the
custody transfer handshake with the corresponding Bundle
Agent on the next overlay hop. In addition, it is responsible
for querying the network for an available next custody
hop, and for selecting the best among the candidates.
It uses the convergence layer for the actual tramsfer of
a bundle to the next custody hop. It also relies on the
convergence layer for performing and getting responses
for custody queries, and for sending out custody transfer
acknowledgment messages.

3) Convergence Layer: This component(ConvLayer)
is analogous to the components that provide neighborhood
discovery and maintenance in traditional sensor networks.
It provides the Bundle Agenr with basic primitives for
transferring a bundle to another custody hop, for sending
and receiving custody query requests and custody acknowl-
edgments. It uses the following components:

346

1) LRX: This component(LRX) is used for the reliable
multi-hop transfer of a bundle from one custody hop
to another. It basically provides a primitive for high-
speed transfer of a bundle over one hop. It uses a ba-
sic windowing scheme along with selective NACKSs .
However the Convergence Layer uses source routing
for specifying the route of a bundle over multiple
network hops to the next custody hop.

2) MulriHop: This component is used by Convergence
Layer for sending/receiving custody queries and ac-
knowledgments. The custody responses from poten-
tial custody hops contain the route of the path to the
respondent.

Table I illustrates the mapping of analogous compo-
nents between traditional sensor networking and DTNLite.

Sensor network | DTNLite function DTNLite
function | Component
Packets Messages(in-order) -
Neighberhood dis- | Custody Query and | ConvLayer
covery and mainte- | Discovery
nance
Multihop packet | Custody hop bundle | BundleAgent
transfer transfer
Network Hop | Network hop bundle | LRX
packet transfer | transfer
GenericComm

TABLE I

MAPPING BETWEEN COMPONENTS

We have implemented and tested DTNLite on
TOSSIM([6]), the simulator for TinyOS applications.

V. CusTODY TRANSFER

This section discusses an important aspect of the
DTNLite framework - the custody transfer mechanism. The
discussion covers the discovery and selection of potential
custody nodes and the mechanics of the custody handshake.
There is a more detailed discussion of these issues in [3].

The reliable custody transfer of a message requires a
handshaking protocol between the source and destination
nodes. Unfortunately, handshaking cannot insure both no
message loss and no message duplication. In other words,
we need to choose between having reliable transfer or
duplicate-free transfer. Since reliability is more important
in our design, message duplication must be accepted and
dealt with,

Since writing to flash is an expensive operation in terms
of energy consumption, the number of times a message
needs to be written to flash, and thus the number of custody
transfers, must be minimized. Some concemns are also
related to network disconnections. If because to temporary
disconmection, a route making forward progress toward the
destination does not exist, the message must remain in
custody until a valid route toward destination is discovered.

In order to address these concerns, the routing protocol
must choose the best neighbor in the overlay to transfer
custody of a message. After having decided on the best
neighbor, it must decide whether transferring custody to
this node is worthy at the current time.

The routing strategy can be targeted toward achieving
one or more of the following global optimizations:

¢ Minimizing the overall energy consumption Very
roughly, energy consumption in the network can be mod-
eled as the sum between the energy spent for packet
transmissions, retransmissions and acknowledgments, and
the energy consumed by writing/reading the messages to
flash. On one hand, minimizing the number of custody hops
reduces the energy spent for flash writing/reading. This rec-
ommends always taking long leaps toward the destination,
by choosing the neighbor in the overlay that is closest to the
destination. On the other hand, failure to transfer custody
happens more often if done over longer underlying routes
(takes longer and due to dynamic conditions, the network
topology can change during the process).

e Obtaining a uniform distribution of the energy levels
of nodes. This optimization has the effect of improving
the overall network lifetime, preventing some of the nodes
from dying prematurely.

e Minimizing the delay in message delivery, and the
number of undelivered messages due to unavailable storage
capacity in the network. Minimizing the delivery delay has
the effect of minimizing the storage used in the whole
network. If we regard the network as a queuing system,
the average delivery time of messages is the average time
spent in the queue. Applying Little’s Law:

Lengthgueue = Arrival Rate X Timeguene (1

we mnotice that the amount of used storage is directly
proportional to delivery time.

While global routing information is preferable to local
information, in these conditions maintaining global infor-
mation is expensive because of limited storage, and is slow
to propagate. This generates lot of network overhead and
even then does not capture the latest network changes.
Thus, we choose to use local routing information.

We propose simple schemes, relying on local self-
assessments for making the routing decision. Choosing the
neighbor in the overlay means choosing the node with the
best local metric. Any combination of the following metrics
can be employed:

o Energy level remaining: Choosing the node with the
highest energy level remaining is intended to yield a
uniform energy distribution.

e Average delivery time: This represents the average time
in which messages owned by the node are delivered to their
final destination. A choice based on the average delivery
delay is intended to minimize data loss.

e Average energy consumption for message delivery:
This metric represents the average emergy consumed by
messages sent by the node until they are delivered. Choos-
ing the neighbor with the minimum average energy con-
surmption will decrease the overall energy consumption in
the network.

A. A custody transfer mechanism implementation

In our initial implementation of the DTN architecture
we propose a simple custody transfer mechanism, relying
on the principles defined previously. Our implementation
assumes the existence of an underlying muiti-hop routing
protocol. Since our system is intended for data collection,
with messages sent to a single destination - the base-station,

347

TR
]
f-3

Fig. 2. Example Custody Query

tree-routing can be assumed. However, this mechanism
can also be used for applications with multiple message
destinations and any-to-any multi-hop routing. The protocol
relies on the fact that nodes maintain local estimates of the
metric used. Quality estimates of links between nodes are
also maintained at both link ends.

1} Querying mechanisms: The querying mechanism
works as follows: the custodian of a message sends a query,
asking for nodes that are able to accept custody for the
given message, and that have a better local metric estimate
than itself. The query packet contains the estimate of its
originator as well as characteristics of the message to be
transferred. The query can be sent in several ways:

e Unicast toward destination, using the route provided by
the underlying tree-based routing,

e Flood limited to a given number of hops, continuing
with unicast toward destination.

o Full flood

Each of these techniques has advantages and disadvan-
tages that will become evident once we discuss the entire
mechanism. The query packet advances as far as possible
toward destination, and the path traversed is added to the
packet. All hops on the way are queried, and the ones that
are willing to accept custody and have a better metric than
the current custodian send a response to the query. In order
for a node to decide whether it can accept custody, it needs
to estimate if it has enough available storage. The response
is sent back to the custodian using the reverse of the path
recorded in the query. Please note that symmetry of links is
assumed. The response contains the local metfric estimate of
the respondent. Quality estimates of the traversed links are
recorded in the response as well. The custodian selects the
best candidate among query respondents, using the metric
of the candidates, as well as the quality estimate of the
paths to these candidates.

Based on the quality of the best candidate, the custo-
dian estimates whether the custody transfer is worth doing
at the current time. If it decides to attempt a custody
transfer, it sends the message to the best candidate, using
source routing on the path recorded in the query response.

The message advances one hop at a time, using a reliable
hop-to-hop message delivery mechanism based on selective
nacks and retransmissions, implemented in [7].

Figure 2 presents an example of the query packet
propagation. The source broadcasts the query to all its
neighbors in the real network, and they all forward it
toward the base-station. The boxed nodes are the ones
that can accept custody, and among those, the circled have
better metrics than the source, and consequently represent
candidates for the next custody hop. Candidates respond to
the query; the query and response packets are represented
by arrows,

2) Metric estimates: The reliability of a link can be
expressed as the ratio of packet retransmissions to the total
number of transmissions on the given link. Every time
a message is transferred on the link, using the hop-to-
hop reliable delivery mechanism, this number is updated.
Estimating the energy level remaining in a node is trivial.
The average delivery time and the average energy consump-
tion can be maintained either using a distance vector like
approach, or by piggybacking information on messages and
let the base-station compute the estimate. We implement
the first approach.

VI. EVALUATION OF CUSTODY TRANSFER
MECHANISMS

In this section we investigate the various custody
transfer query and selection mechanisms presented in more
detail in section V. In particular, we study the following
custody query/discovery policies:

1) Unicast : The query is sent along the routing tree
up to the destination.

2) Limitedflood : The query is flooded up to some
levels and then sent along the routing tree to the destination.
and the following custody hop selection policies:

1) NEAREST - Nearest Hop: Expected to lead to
more custody (ransfers than necessary, thus more energy
copsumption.

2) FARTHEST - Farthest Hop (Closest to destination):
Minimizes the number of custody transfers, but each trans-
fer is expected to take longer, since the probability of
reliable transfer decreases with distance.

3) ENERGY LEVEL - Node with Most Remaining
Energy : BExpected to maximize overall network lifetime,
minimizing the variations in the energy levels.

4) AVG DELAY - Least Average Delay: Every node
maintains an estimate of the average delivery delay, and
the node having the smallest delay is chosen.

5) ENERGY CONS - Least Average Energy Consump-
tion: The policy chooses the node that on average consumes
the least energy for sending a message to the destination.

All the policies mentioned above rely of completely
local information for maintain estimates.

A. Simuldation Setup

We are using a discrete event based simulator [5]
developed for simulating routing algorithms for networks
with scheduled disconnections. We made the appropriate
modifications for handling unscheduled disconnections and
packet collisions. For the connectivity model, we assume

348

that all nodes within a certain radius are connected by a
link. To model the intermittent nature of the network, we
assume that a link can go up or down at exponentially
separated intervals - the time that a link stays up is
determined by the distance between the nodes. The radio
collision model is simplified; packets collide only if they
are destined for the same node. The queries are flooded for
three levels and are then forwarded to the base along the
routing tree.

Parameler Range in sunulation | Range for MICA
Time 1 1 sec
Packet size 1 258
Bundle size 25 625 B
Bandwidth 40/unit 1KB/s
Flash storage 5K-20K 125KB-500KB
Average degree(density) | 8 -
Num of nodes 10-100 -
TABLE II
SIMULATION SETUP

For executing the custody queries, a routing ftree is
maintained by the nodes. The Iree is formed by performing
a breadth first search starting from the base-station (root
node). We assume that the effective cumulative bandwidth
that the base station node can handle is constant - but to
normalize for all network sizes, the rate of data generation
for the nodes is determined according to the number of
nodes. All the custody selection policies are modeled
using the approaches mentioned in section V. However
we do not model the query mechanisms at packet level
- we assume full knowledge of the network for selecting
potential custody nodes. We choose to do so because
we are more interested in comparing the custody hop
selection’ policies per se. To make the parameters more
realistic, we use the Berkeley Mica motes as the basis for
parameter choosing. The mapping between Mica motes and
simulation parameters is shown in table II,

B. Evaluation

We compare the different metrics by considering a
number of parameters. We perform all experiments for both
unicast and limited flood queries, but since the policies have
very similar behaviors, we only present the results for the
limited flood queries.

1) Delivery Time: The first set of graphs compare
the different custody transfer policies with respect to the
delivery time of messages (Fig.3). We can clearly see that
the AVG_DELAY policy expectedly performs beiter than the
other policies, though none of them is able to deliver all
the messages within the (fixed) simulation interval. Not
surprisingly the NEAREST and the FARTHEST policies
have the worst average latency. The FARTHEST policy
loses out because it takes more time to complete successful
custody transfers over longer hops, while the NEAREST
policy undergoes longer delays because of the larger of
number of hops that it takes.

Fig. 3 (b) shows the fraction of messages that are
delivered at the end of simulation time for varying network
sizes. An interesting trend that can be observed is that
delivery ratios decrease as the network size gets larger -
this is because of the congestion at the single basc-station

sink and suggests that the data generation rates should be
lower for reliable delivery.

FARTHEST —o—
NEAREST ~—¥—
ENERGY LEVEL -~ %—

) AVG DELAY —a—
RGY CONS -+

LATENGY (UNITS)
w
8
FRACTION DELIVERED
<
&

200 FARTHEST —o—
EAREST —¥—
100 ENERGY LEVEL -~ x-
Y —a—
0' ENERGY CONS =t .
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100
NUMBER OF NODES NUMBER OF NODES
(@ (Y]

Fig. 3. (a) Average latency for message delivery; (b) Fraction of messages
delivered

2) Hops per message: Here we compare the number
of hops needed for messages to reach the base-station
for cach of the observed policies, Fig. 4 (a) plots the
average number of custody hops needed for each successful
message received at the base, We see that the FARTHEST
policy minimizes this criteria, although, as we see in Fig. 3
(b), it sacrifices on the delivery ratio. As expected the
NEAREST policy maximizes the number of custody hops
as is always chooses the node that is closest to the source.

1 FARTHEST —o" B [FaRtuEsT —o—
16 NEAREST —»— NEAREST —x-~
ENERGY LEVEL - % 20 |ENERGY LEVEL - x-m
14 AVG DELAY —B— AVG DELAY —8—,
£ iz ENERGY GONS -4 e ENERGY CON
= =
8 10 e 3
8 8 f{x + 089
o o e o
2 o] el 2
4
2%
o L.
10 20 30 40 50 60 70 8O 90100 10 20 30 40 50 60 70 BO 90100
NUMBER OF NODES NUMBER OF NODES
(a) (b)
Fig. 4. (a) Custody hops per message; (b} Networks hops per message

Fig. 4 (b) plots the average number of network (not
custody) hops needed for each successful message, and we
can observe that the NEAREST policy uses the maximum
number of network hops for delivering a message.

3) Energy: In these set of experiments, we compare
the energy efficiency of different policies. Fig. 5 (a) shows
the average node energy level over time for all the policies,
while Fig. 5 (b) shows the standard deviation of the node
cnergy levels with time. While we see that the FARTHEST
policy uses the least energy overall(since it has to perform
fewer custody transfers and therefore fewer writes to stable
storage), it has far worse delivery performance. However
the ENERGY_LEVEL policy is able to equalize the energy
level differences among the nodes.

C. Results

We can conclude from the above results that the
selection policies based on energy are able to minimize

349

FARTHEST —— FARTHEST ——
30000 NEAREST mmemeee 10000 NEAREST —-—-
AVG DELAY 3 AVG DELAY --—
L ENERGY LEVEL = ENERGY LEVEL ——
@ 25000 NERGY CONS - { = 8000 ENERGY CQJ
5 3 z
= 20000 =B S
& 15000 £ g
& S soo0 L
Z 10000 ?_ /fjﬁf
2000 o
5000] e
0 - [
0 200 400 600 8OO 1000 1200 0 200 400 600 800 1000 1200
TIME (UNITS) TIME (UNITS)

(a) (b)

Fig. 5. (a) Average Node energy level over time(nodes=100); (b) Standard
deviation of energy level with time(nodes=100)

the energy usage variation among the nodes while those
based on delay are able to minimize latency of message
delivery. All the policies use purely local information and
the estimates about link qualities and node metrics are
updated using information from neighboring nodes. This
entails that, if there is a systematic variation in the link
qualities, these variations can be learned over time by
maintaining local estimates that are then aggregated by
other nodes.

VII. CONCLUSION AND FUTURE WORK

We have implemented DTNLite, a custody transfer
based reliable transfer mechanism for sensor networks that
face challenges like low memory resources, high mobility,
frequent disconnections and flaky nodes. We have discussed
some of the important issues in custody transfer and inves-
tigated one of them, namely querying and selecting of the
next best custody hop in more detail. The evaluations show
that our scheme can achieve reliability, while optimizing
for a particular objective like energy or delay, using purely
local information. In the future, we intend to perform a
comparative evaluation of our architecture, relying on the
custody transfer mechanism, with other proposed reliable
transfer protocols(section II).

REFERENCES

[1]1 Philip Levis David Culler. TinyOS: A Component based OS for
Wireless Sensor Networks. htp:/fwebs.cs.berkeley.edu/tos/, 2003.

[2] K. Fall. A Delay-Tolerant Network Architecture for Challenged
Internets. ACM SIGCOMM, 2003.

[3] K. Fall, W. Hong, and S. Madden. Custody Transfer for Reliable
Delivery in Delay Tolerant Networks. Infel Technical Report:IRB-
TR-03-030, 2003.

[4] D. Gay. The Matchbox File System. http:/fwebs.cs.berkeley.edu/tos/
tinyos-1.x/doc/matchbox-design.pdf, 2003.

[51 Sushant Jain. DTN Simulator. hup:/fwww.dmrg.org, 2003.

[6] Matt Welsh Philip Levis, Nelson Lee and David Culler. TOSSIM:
Accurate and Scalable Simulation of entire TinyOS applications. In
Embedded Networked Sensor Systems, pages 126-137. ACM Press,
2003.

[7] SKim. Structure Monitoring using Wireless Sensor Networks.
CS5294-1 Deeply Embedded Network Systems class project, 2003.

[8] Fred Stann and John Heidemaon, RMST: Reliable Data Transport in
Sensor Networks. [st IEEE International Workshop on Sensor Net
Protocols and Applications, 2003.

[9] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy.
PSFQ: A Reliable Transport Protecol for Wireless Sensor Networks.
First Workshop on Sensor Networks and Applicarions (WSNA),
September 28, 2002, Atlanta, GA.

