Modeling and Simulation of Industrial Networks With
Timed Petri Nets

Gheorghe Sebestyen
Technical University of Clyj
Cluj. str. G. Baritiu nr. 26-28

Romania
aheorehe.sebestvent@ es.itchiro

ABSTRACT

The article presents a new modeling and simulation
methodology, specially developed for the requirements of
industrial communication networks. The methodology is
based on an extended Timed Petri Nets model. The
program developed on this methodology offers the
possibility to test the real-time and reliability
characteristics of industrial communication protocols.

Keywords: industrial networks, Timed Petri Nets,
simulation, modeling

[. INTRODUCTION

Industrial networks represent a special category of
digital networks adapted to the specific communication
needs of a control system [5][6]. The communication
protocols developed for these networks must assure an
improved real-time response and a higher reliability [9].
Modeling and simulation tools used for generai-purpose
computer networks don’t offer enough support to
describe and to test real-time behavior and fault
tolerance. This paper proposes a new modeling and
simulation method based on Petri Nets, adapted to the
special needs of industrial network protocols.

The application developed on the base of this method
allows graphical description of protocols’ behavior and
network simulation under different load conditions. To
demonstrate the advantages and facilities offered by this
method, a number of casc studies are presented.

I[I. INDUSTRIAL COMMUNICATION
NETWORKS

Complex computer-based control systems nced a
communication infrastructure that connects field
automation devices (c.g. sensors, transducers, actuators)
with control and supervisory devices (e.g. PLCs,
regulators and process computers). Industrial
communication networks were specially developed for
such purposes. These networks are optimized for the
specific data flow of a control system [6], their
behaviour s deterministic and real-time message
delivery requirements can be guaranteed.

In a control system the correctness of a program
execution is decided not only on the correctness of the
calculus, but also on the fulfillment of time

Péter Keresztes
Szechenyi Istvan University
Gyér, Egyetem tér |
Hungary
keresztes(@sze. hu

requirements. The communication, as part of the control
chain, must fulfill the same requirements. The
communication protocol must include some
mechanisms, through which the delivery time of
messages can be controlled. Usually messages are
scheduled for transmission, off-line or on-line, based on
their time characteristics: deadline, repetition period,
transmission time, etc. With a protocol modeling and
simulation tool, a designer can verify if the time
restrictions for message delivery are accomplished,
before the physical implementation o the systen.

In many cases, control systems must work 24 hours a
day, and any interrupt caused by defective components
or communication failures can cause important losses.
For this reason the industrial protocols must allow in-
line disconnection of defective components and
connection of new ones. The error detection and
correction mechanisms implemented in the protocol
must make communication errors transparent for the
higher-level control application. Through simulation the
designer can study the behavior of the network in the
presence of such (simulated) errors. An important aspect
in this case is the time delay caused by the presence of
an error. Some protocols have time and space
redundancies (e.g. message duplication, two
communication lines, CRC- Cyclic Redundancy Code),
through which communication errors can be masked.

111, PROTOCOL MODELING WITH PETRI
NETS (PN)

Communication protocols involve complex mechanisms
for synchronization, flow-control, routing, error
detection and cormrection, ctc. Abstract description,
modeling and simulation are ways of controlling this
inherent complexity [7].

Petri Nets represent a strong abstract formalism used to
model] discreet event systems. Petri Nets models are
recommended to describe interaction, concurrency,
parallel execution or mutual exclusion. These
characteristics are typical for network protocols. But the
classical formalism of Petri Nets cannot express
properties connected with time (e.g. exccution time,
delays, synchronization, etc.). A number of extensions of
the basic formalism were proposed, to add time behavior

for these models. There are three main approaches,
called Timed Petri Nets (TPN).

The model proposed by Ramamoorthy [1] uses a
function that attaches a firing time to transitions. A
transition is fired in two phases: in the first phase tokens
are consumed from the input places (as in the classical
PN); the second phase starts when the firing time
elapsed; in this phase tokens are generated in the output
places. The model can describe atomic actions that are
executed in a predefined time.

In the model proposed by Merlin [1] transitions are fired
instantaneously (as in the classical PN), but in a static
firing time interval. The moment when an enabled
transition is executed is elected from the time interval,
based on a probabilistic function. This formalism is
adequate for sporadic and random event simulation.

The third model proposed by Sifakis [1] attaches a delay
time to places. A token that arrives to a place will be
delayed with the amount of time attached to it. The
token can enable a transition only when the delay
elapsed. Another version of this extension attaches
delays to the arcs. In this case tokens have to wait
different time intervals depending on the arcs they
traveled. Tokens inside of a place can be identified if
they are “colored”. Colored Petri Nets represent a more
general model that allows attachment of structured data
to tokens.

Trying to model industrial communication protocols
with one of these Timed Petri Nets extensions seamed
difficult and in many ways incomplete. For instance the
evolution of a TPN model depends only on some
discrete events which are “consumed” during the firing
of a transition. But in a communication protocol some
actions are started not only on the occurrence of some
events, but also based on the state of an entity (e.g. the
state of the network), which is not modified after the
action is executed. Another issue is that industrial
protocols need different time semantics to express
delays, transmission time, deadline, repetition period,
ete.

To overcome these problems, & new TPN extension was
developed. The following new elements were added to
the basic formalism:

e transitions with execution time
transition with probabilistic execution time
transitions with enabling time
re-triggerable transitions with execution time
condition and non-condition arcs
a global time counter

Transitions with execution time are used to model some
actions that take place in a predefined period of time
(e.g. transmission of a message or periodic generation of
a new message). When the transition is fired, a counter
is initialized with the execution time attached to the
transition. The counter is decremented by every “tic” of
the global time counter. The transition ends when its

355

counter becomes zero. The tokens from the input places
are consumed at the firing moment and the tokens for
the output places are generated at the end of the
transition. The transition is atomic, it cannot be
interrupted or stopped by any event.

A transition with probabilistic execution time is similar
with the previous one, but the execution time is
randomly selected from a given interval. This kind of
transition can be used to model sporadic events or
actions with variable execution time.

A transition with enabling time is fired if the enabling
conditions stay stable for a period of time specified by
the value attached to the transition. This transition is
useful for time-out or watchdog conditions modeling.
For instance an error recovery procedure is started if an
acknowledge message does not arrive in time. The re-
triggerable transition can be used for similar purposes.
The difference is that the transition is started when the
enabling conditions are valid and its counter is
reinitialized whenever the enabling conditions become
again valid. The transition ends if the time between the
last enabling condition and the next one is greater then
the execution time of the transition. For instance the
following situation can be modeled with this transition: a
network node can transmit a new message if the line is
free for a given period of time. If the transition ends,
then it will generate a permission token to transmit a
message.

Condition and non-condition arcs are used to enable or
disable transitions based on the state of the input places.
If an input place is commected to a transition with a

‘condition arc then the transition is enabled if the input

place has one or more tokens. If the transition is fired the
number of tokens in the input place is not changed (the
“state” of the location remains the same). A non-
condition arc works in a similar way, but the transition is
enabled if the input location has no tokens. These arcs
are used to control the evolution of the TPN model
based on the state of some entities rather than on some
discrete events. For instance a lower priority message
transmission (modeled by a transition) is conditioned by
the absence of a higher priority message in the output
buffer (modeled by a location). The transmission of the
message does not change the state of the output buffer.

The global time counter is used to control the evolution
in time of the TPN model. A time step is allowed when
all the enabled transitions of the previous step are fired.
When the time counter is incremented the local counters
of the transitions in progress are decremented, A local
counter is initialized with the time value attached to the
transition when the transition is fired. If a local counter
becomes zero, than its transition ends and tokens are
generated into the output places. The global time counter
can be used to mark with time-stamps the moments
when a transition starts and ends. In this way concurrent
events generated by the TPN model can be ordered in
time. During the execution of a model, a transition
may have different states. Its state depends on the

transition’s type, on the ecnabling conditions and on its
previous evolution. A transition with execution time
may be in one of the following states: disabled, enabled,

Disabled led
Enable cond.

Counter = 0

Trans. end In progress Firing

Transition with execution time

firing, in progress and transition end. A transition with
enabling time has the following states: disabled, enabled
and firing. Figure 1 shows the rules for state changes.

Disabled Enabled

nable cond

Transition with enable time

Figure 1 State changes for transitions

IvV. TPN MODELING AND SIMULATION
ENVIRONMENT

Based on the extended TPN formalism presented in the
previous paragraph, a modeling and simulation
environment was developed. This environment offers some
useful tools for a communication protocol designer, such
as:

s a graphical TPN model editor

e a library with some well-known protocol

models and protocol building blocks
e 3 TPN model simulator

The simulator offers different possibilities to trace the
execution of a TPN model: step-by-step, time-step,
continuous (slow and fast), from a predefined starting
marking to an ending ome, etc. The samé¢ model can be
tested under different conditions. Starting conditions are
specified through the initial marking. Modifying the
execution time of transitions may change time conditions.

The simulation window shows the steps made by the
model during execution. The following information is
displayed for every step: time-stamp (the value of the
global time counter at the moment when the step was
executed), marking (number of tokens in every location)
and start or end of a transition. Through this information
the designer can learn about the behavior of the model.
Many design errors such as deadlocks, unreachable states,
or deadline misses can be revealed. The maximum token
number in a place can show the optimal dimension of a
message buffer.

The library included in the environment contains some
prototypes of typical industrial communication protocols,
such as: token-bus, virtual token bus, CSMA/BA (Carrier
Sense Multiple Access with Bit Arbitration), TDMA (Time
Division Multiple Access), etc. These prototypes are a
good starting point for more complex or detailed protocol
models.

The primary goal of this environment was protocol
modeling and simulation. But because of its generality in
terms of formal descriptions, the environment can be used

356

for a wider range of applications. It is recommended
mainly for distributed control applications, because it
offers modeling support for concurrency, event-triggered
execution and real-time behavior.

V. CASE STUDIES OF INDUSTRIAL
COMMUNICATION PROTOCOL MODELING
AND SIMULATION

To show the advantages and limitations of the proposed
TPN extension and of the developed environment, a
number of representative industrial protocols were
modeled and simulated. The analysis was focused on
protocol characteristics that are specific for the category of
industrial networks, such as: real-time behavior,
determinism, reliability and fault-tolerance. These
characteristics are determined mainly by the mechanisms
used to control the multiple accesses on the network
(MAC- Multiple Access Control protocol). For this reason
the protocol models described with the TPN formalism
express mainly the behavior of this protocol level.

There were selected four types of industrial protocols, with
relevant access control mechanisms:
e Profibus — as a token-bus network,
CAN - as a CSMA/BA network,
P-Net — a virtual token-bus network, and
TDMA - a reservation-based network

Figure 2 shows a part of the Profibus protocol model,
responsible for the access control mechanism. Place L1
holds the messages waiting for transmission, L2 holds the
right to transmit on the network (token) and L4 holds the
token when the transmission right belongs to the other
nodes from the network. Transition T1 models the
transmission of a message, T2 models token passing, and
T3, T4 simulate the delay of a token passing cycle through
the network. In this simplified model the transmission night
is transferred from the current node if there are no
messages pending in the message buffer. In a more
detailed model the time, during which a node holds the
token, was limited.

Some other time restrictions were modeled in the case
study, such as: maximum token passing cycle, maximum

time delay for an acknowledge message and maximum
recovery time for a lost token. The protocol was tested also

L1 rplEé?: Tholding the token

= |
Message [% I
buffer ‘._.< {

/ T
non-cond.

T1

token transm.
message transm.

-token

Network cycle
counter

under simulated fransmission errors.

tmin= shortest cycle
tmax= longest cycle

[tmax

I
I
1
|
|
|
I
|
|
|
I
|
|
I

T1- message transmission
T2 — receive acknowledge
T3 — message retransmission
(transition with enable time)
T4 acknowledge transmission
L1 — pending message buffer
L2 - access right

L3 — received message

L4 — wait for acknowledge
L5 — received messages

= tenable

Figure 3 Limited acknowledge time

Figure 3 shows a recovery mechanism used to retransmit a
message if its acknowledge message does not arrive in a
predefined time. In the model, transition T3 initiates a
message retransmission if the acknowledge generated by
transition T4 1s delayed.

The other industrial protocols were modeled and simulated
in a similar way. A detailed presentation of these case
studies is presented in a technical report [10]. The
conclusions of these case studies are the following:

e the extended TPN formalism offers a good
support for the analysis of industrial protocol
characteristics

e basic protocol mechanisms can be tested in an
early design phase

e the complexity of the TPN protocol model gives a
good measure of the complexity of the protocol
itself

e there are some limitations inherent to any
classical Petri Net formalism, such as: limited
model structuring possibilities and complex
enabling conditions are difficult to express; these

drawbacks can be partly overtaken with the use of
colored PN.

VI. CONCLUSIONS

Industrial ~communication protocols have specific
characteristics, which imply the use of adapted tools for
modeling and simulation. This paper proposes an extended
TPN formalism that offers good flexibility in expressing
these characteristics. This formalism is also recommended
for distributed control systems.

A modeling and simulation environment was implemented
based on this new formal description method. The case
studies made on some representative industrial protocols
showed the advantages and also the limitations of the
proposed formalism.

VII. ACKNOWLEDGEMENTS

The work was possible due to the support given by the
Joint Hungarian — Romanian Intergovernmental S & T Co-
operation Program under grant 13/2002 and contract No.
18051/2003 (code RO-9/2002 and HU-17/2002).

357

VIIIL.

[1]

[2]

(3]
[4]

REFERENCES

FBowden, “Modelling Time in Petri Nets™ , The 2-nd
Australia-Japan Workshop on Stochastic Models,
Goald Coast, 1996

C. Cardeira, F Simonot-Lion, M Bayard, “ Intelligent
Field Devices and Field Buses: Impact on
Applications Design Methodology”, Studies in

Informatics and Control Vol 4 No. 3, pp 255-262,
1995

R. Crowder, “Fieldbus Performance”, Technical
Reprot, Ship Star Associates, 1996
C. Erksson, M Gustafsson, H Thane, “A

Communication Protocol for Hard and Soft Real-Time
Systems®, 8th IEEE Euromicro, Real-Time Workshop,
1.’ Aquila, Italy , 1996

L.B. Fredrksson, “Controller Area Networks and the
Protocol CAN for Machine Control Systems”,

iy

358

(8]

[

Mechatronics , Vol 4 No.2 pp 159-192, 1992

S. Koubias, G.Papadopoulos, “Modemn Fieldbus
Communication Architectures for Real-Time
Industrial Applications™, Computers in Industry

Jjournal (ELSEVIER) Vol. 26 pp. 243-252, 1995
Pasadas R. , Almeida L. Fonseca J. 1997, *“ A Proposal
to Improve Flexibility in Real-Time Fieldbus
Networks * IFAC SICICA ‘97 , 3rd IFAC Symposium
on Intelligent Components and Instruments for
Control Application , Annesy, Franta, 1997

P. Raja, J Hernandez, L Ruiz. F Guidec, J.D
Decotignie., “Simulating Fieldbus Applications With
DRUGH Simulator”, Computers in Industry
(ELSEVIER)} No. 27, pp.43-51, 1995

G. Sebestyen, K. Pusztai, “New Networking
Technologies in Control Applications”, 2™ RoEduNet
Conference, 2003

