Design method for vector control system implementations
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Abstract — The technology development and the software
tools, which allow the design and simulation of digital
systems, allows the design of new intellectual property (IP)
elements. This new IP elements permit the rapid prototyping
of digital signal algorithms. The vector control systems are
considered complex digital control systems, from many points
of view. The implementation of such a system requires run-
time computing. Besides the digital signal processors, the field
programmable gate arrays are the new technology, which can
implement such dynamical systems. This paper describes a
design methodology for vector control systems based on the
previously implemented vector control library.

I. INTRODUCTION

Traditionally, digital processing tasks were implemented
in Digital Signal Processors (DSP) using software
implementation methods. Since the DSP is optimized for
digital signal processing, however is not optimized for the
specific algorithm, which implemented in software may
result in poor performance. While implementing the it in
hardware, the implementation is ,tailored” to the specific
algorithm, resulting in fast performance. The invention of
Field Programmable Gate Arrays (FPGA) has given rise to
an alternative method of computing. The FPGA provides
the means for achieving hardware performance and
software versatility. The FPGA implementation can be
optimized for the specific algorithm, and can reuse and re-
optimize multiple algorithms by simply reconfiguration of
the device.

However, the technology expansion (i.e. packing more
transistors and increasing clock speeds) is no longer the
answer to the advanced .computing needs of the future.
Furthermore, rapidly changing standards and the demand
of new applications cannot tolerate the limitations of the
conventional fixed functions and rigid design approach
(RISC, DSP, ASIC). More advanced flexible processing
platform is required to enable the next generation
applications, which will use intensively the reconfiguration
possibilities [2].

The solution lies in adaptive computing, a new
processing technology, with an integrated circuit (IC)
architecture that changes on demand to perform much
wider variety of functions at high processing speeds, with
lower consumption, reduced silicon area and at very low
cost.

At the beginning of the “FPGA era” most of
reconfigurable computing systems were plug-in boards
made for standard computers and they acted as a
coprocessor attached to the main micro-processing unit.
Many of applications of reconfigurable computing were
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reported in image processing, digital signal processing and
custom computing machines. With the evolution of FPGA
technology and the associated design tools, the application
field has grown rapidly. Even more, this technology
became a support for the new single chip solution called
System on Chip (SoC).

Kiel and Lenze observed the tendencies in electronics for
motion control systems and traced the future trends [3].
They predicted the increasing importance of the FPGA
chips in motor control system implementations.

Considering the main advantages of FPGAs, regarding
their reach-hardware resources and parallel algorithm
implementation and also in the run-time hardware-
structure reconfiguration possibilities, we may say that it
will be the basis of many future applications.

The field-orientation principle introduced by Blaschke
[1] in 1971 became the most efficient method for the
control of induction motors. Using digital signal
processing methods it allows the most dynamic control of
the speed, torque, and position of AC drives. The
implementation is effective if allows minimum sampling
period and high execution speed. The reconfigurable
technology fulfils the former conditions.

In the last years several vector control research groups
presented different FPGA implementations, but more ore
less these solutions were not intended to give a general
design method for rapid prototyping and design of vector
control systems see [4], [S], [6], [7].

This paper will present a unitary design methodology for
rapid prototyping and design of vector control systems for
induction drives.

. MODULARITY OF VECTOR CONTROL SYSTEMS

Induction motors are perhaps the most rugged and best-
understood motors presently available. The main
advantages of these motors are their simple maintenance
and their cost effective operation. The induction machine
model based on the space phasor theory has a general
character. To define the space phasors no restriction was
imposed considering the time variation of the phase
guantities. On the same theory is based also the field
orientation principle, which leads to the vector control
method of the AC drives.

The generalised block diagram of such a control system
with induction machine supplied from a static frequency
converter (SFC) is presented in Fig. 1, where the (wo
control loops, corresponding to the active and reactive
stator-current components are split.
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Fig. 1. Block diagram of a vector control system based on field-orientation.

The first condition of the application of the field-
orientation principle is the identification of the main flux-
vector position (argument).

The vector control structure of the induction machine
depends on the orientation flux to be used, i.e. rotor-field
(¥,), air-gap field (¥,) or stator-field (¥;). Each type of
orientation has advantages and djsadvantages.

The orentation-field identification depends on the
measured quantities. Considering the control loop and the
sensors, generally there are two variants: direct (flux
measurement) and indirect (calculated) flux sensing and
also two .field orientation - direct and indirect ones.
Concertiing the sensors, the direct flux measurement leads
to simpler schemes in comparison with the flux calculated.
However, direct flux measurement is difficult. The indirect
flux sensing based on stator current and rotor speed
measurement leads to the indirect filed orientation, which
is parameter sensible method and needs to complex
computation algorithms. For this reason, we will use the
indirect flux sensing based on the stator voltage and
current, which leads to direct flux orientation and fast
algorithms implemented in hardware for the flux
calculation.

In Fig. 1, one may observe, that in a vector control
systern structure there are some computing modules, which
have to be part of any vector control scheme. These
commonly used modules in this paper will be called
characteristic modules. They are:

o PhT[A] the direct- and PhT[A]" reverse-Phase-
Transformation module, which compute the transition
from three-phase quantities (a, b, c) into two-phase
ones (d, q) by applying matrix operator [A] and from
two-phase quantities (d, q) into three-phase ones (a, b,
¢), with matrix [A]", respectively;

o CooT[D(4)] direct- and CooT[D{-4)] reverse-
Coordinate Transformation module, which rotates the
two-phase axis with angle 4 or -4, i.e. computes {rom
the d-q stator-oriented quantities the dA-gi stator/rotor
field-oriented ones by means of the matrix operator
[D()], and in the epposite direction, from the dA-qA
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stator/rotor field-oriented components computes the
d-qg stator-oriented magnitudes using operator [D(-1]],
respectively;

e VA the Vector Analyser module, computes the
amplitude (module), sine and cosine trigonometrical
functions of the vector position (argument).

The structure of the vector control system depends on
the field-identification method, the chosen orientation-flux
(stator- or rotor resultant flux), controller type (PI, PID,
adaptive, fuzzy, neural, etc.) ‘and the static frequency
converter topology, source-character (voltage- or current)
and its pulse modulation procedure. The particular
modules in this paper will be called specific modules, as
follows:

o W.C stator- and ¥, C rotor-flux computation moedule,
which computes the orientation field by integration of
the stator-voltage equation (W) and compensation
into ¥,.

o Controller Strategy block could be with PI character
and also other types, like fuzzy-, neuro-fuzzy-,
adaptive neuro-fuzzy controllers etc.

e Control variable Computation block contains the
stator-voltage computation modules U;C or V,C.

The vector control systems require the machine dynamic
model based on the space-phasor theory in order to apply
the field-orientation principle in the decoupling of the
control Ioops and in calculation of the control variables.
The field-orientation principle offers the mathemalical
solution of the vector control systems and ensures high
dynamic performance [9].

The most widespread method of the orientation-field
vectorial identification is that, which utilizes the usual
feedback signal (i.e. the rotor angular speed and the stator
currents and voltages). The structure of the implemented
control system is quite complex, but the cost is reduced
due to the new technologies such as Digital Signal
Processors (DSPs), Field Programmable Gate Arrays
(FPGAs) or Configurable System on a Chip (CSoC) chips.



III. DECOMPOSITION OF DIGITAL SIGNAL
PROCESSING ALGORITHMS

If the digital signal-processing algorithm presents
modularity, the implementation is easier. This is the reason
why the vector control system was analysed and divided in
characteristic and specific blocks. Also digital signal
processing is speed and algorithm critical area where until
the recent years DSP processors had the domination.
Traditionally, digital signal processing algorithms are most
commonly implemented using general-purpose
(programmable) DSP chips for low rate applications, or
special-purpose (fixed function) DSP chip-sets and
application-specific integrated circuits (ASICs) for higher
rates.

Technological advancements in Field Programmable
Gate Arrays (FPGAs) in the past 5 years have opened new
possibilities for DSP design. The FPGA maintains the
advantages of the high specificity of the ASIC while
avoiding the high development costs and inability to make
design’ modifications after production. The FPGA also
adds design flexibility and adaptability with optimal device
utilization conserving both board space and system power
consumption, which is not often the case with DSP chips.
When the design is demanding higher speed and the
application it is time-to-market critical or design
adaptability is crucial FPGAs are the solution.

The SRAM based architecture of the Xilinx FPGA/the
Triscend CSOC is well suited for multiply and accumulate
(MAC) intensive DSP functions. Wide ranges of arithmetic
functions are implemented into the FPGA and if needed
they are reconfigured ,on-the-fly”. These functions
includes, fast Fourer transforms (FFTs), convolution,
filtering algorithms, as well as mathematical operations
and the surrounding peripheral circuitry. Designing a
digital signal processing system, using FPGA chips the
data can be processed taking advantage of single chip
paralleled structures and distributed arithmetic algorithms
to exceed the performance of a single general-purpose DSP
device.

A. Algorithm analyses and modularity

The analysis of the vector control schemes and especially
the vector control structures of the reconfigurable
“tandem” converter were presented in detail in [11]. The
analyses for reconfigurable vector control systems were
performed based on the following criteria [12]:

Given any vector control structure if exist any common

modules then:

» Which are the common modules in the same position
with the same function?

o Which are the common modules with different
functionality?

e Which are the particular modules
(reconfigurable) structure?

e When reconfiguration condition occurs, is it possible
the output variable value transfer to the modules on
the same position or no output variable value transfer
allowed?

o Is the output variable value transfer of the controllers?

of each
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e Is it possible to give a general mathematical model for

all of the modules?

Resulting from the analyses of the vector control
structures one can do the decomposition of any vector
control algorithm in elementary operations. From this
decomposition and from the modularity of the algorithm
was created an intellectual property (IP) library made
especially for the implementation and rapid prototyping of
vector control systeims [12].

There are some major advantages of using a pre-
designed parametrical IP core library when implementation
is targeted. These advantages are:

e The implementation time of the simulation model is
short, as the simulation model is the implementation
itself. This can be done with the translation of the cores
in FPGA configuration data (using the development
environment).

e The computation speed increase. This results from the
parallel implementation of computation algorithm of
both components (d, q) and the parallel computation of
each IP core. This is a significant advantage compared
to the DSP sequential implementations.

¢ The parameters of each IP core element can be adjusted
easily to any AC motor characteristics. Even the data
format can be modified if necessary.

e Flexibility in implementation: each IP core can be
translated separately and the vector control system can
be translated as a whole.

e The targeted device can be changed if necessary.

¢ The optimisation of the IP elements is made for speed
orfand area, which are characteristic to FPGA
implementations. [11], [12]

IV.MODULE LIBRARY FOR VECTOR CONTROL
SYSTEMS

After the vector control system decomposition in
elementary operations a module library was created in
order to help the rapid prototyping of the vector control
systems.

There are some major advantages of using a pre-designed
parametrical IP core library when implementation is
targeted. These advantages are:

» The implementation time of the simulation model is
short, as the simulation model is the implementation
itself. This can be done with the translation of the
cores in configuration data (using the Xilinx
development environment)

e The computation speed increase. This results from the
parallel implementation of computation algorithm of
both components (d, q) and the parallel computation
of each IP core. This is a significant advantage
compared to the DSP sequential implementations.

e The parameters of each IP core element can be
adjusted easily to any AC motor characteristics. Even
the data format can be modified if necessary.

» Flexibility in implementation: each IP core can be
translated separately and the vector control system
can be translated as a whole.

e The targeted device can be changed if necessary.

The optimisation of the IP elements is made for speed
orfand area, which are characteristic to FPGA



implementations. In TABLE I are presented some of the
elements of the implemented library. The table presents the
implementation slices consumed by each element, the time
delay introduced, the maximum working [requency (were
applicable) and the quantisation error of the elements.
From the implementation results, one can estimate the
hardware necessities of the vector control system, the
maximum delay introduced by the system, can analyse the
quantisation error of each module, etc.

The Xilinx System Generator, which was used fo
implement the library elements, allows the estimation of
the gquantisation error introduced by each module. For
example the guantisation error introduced by the phase
transformations are:

Ag,ye[-1.5-107,1.5.107, (1)
Ae, e[-1.5-107,3-107%), 2
where Agy, is the quantisation error.

TABLE 1
CHARACTERISTICS OF THE IMPLEMENTED VECTOR CONTROL LIBRARY MODULES [11], [13].

Werth path Max
Library element or IP Slices needed for | delay _ .
Module name e implementation introduced Quantization etroe Working

tdins] fMHz)
Direct Phase -
Transformation Block PHT[A] 152 27.00 qe<1.5%10 na
Reverse Phase 1
Transformation Block PHTA] 217 4 =0 4
f;:;f;?;;ﬁ’;ﬂ“ W4F,Co 1000 4170 0.02<g,<0.1 42,00
Vector Analyser VA 1995 16.60 na : 166,90
Coordinate Transformation | CooT[D(#\)} 25 10.00 <1.107 na
Space Vector Modulation SVM 27 3.06 n.a. na
Current feedback
Modulation PWM 77 3120 na 224.15
Flux Controller Y-PI 24 4.00 ~0.6710" na
Speed Controller QFI 24 4.00 ~0.6¥107 n.a

Qeawe =-6*107
Flax+Speed Controller PI 135 1373 o1 <016 128.18
Reconfiguration . I
Multiplexer MUXr 5 3.12 0 na
CSI  cumenl  comstamt | 79 16.99 2%10%<g.<5*10° na
multiplier
4496 slices
Total Estimated resources Tandem 1058 FF 48.29 na 3845
9334 LUT

Fig. 2 presents graphically the quantisation error
variation for the output values of stator voltages ts-usq.

X o Smnaprasudmndtreq.mﬁsalmmdusq—usﬂ

3 - - - —r

quantisation emor g,

Fig. 2. Quantisation error of the block PHTTA] for the variables s - U

We can say that, comparing the input value ranges of the
voltagefcurrent to the quantisation error values, the
obtained output values have an acceptable precision.

V. DESIGN METHODOLOGY

The design methodology is also a result of the
development of the vector control IP library. Since the
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library is intended for implementation of any vector

control system, the methodology has also a general

character. In the following we present the design steps
proposed to follow in order to use the module library for
any vector control system implementation:

1. Development of the vector control structure for the
asynchronous drive.

2. Development of the per unit model of the induction
motor drive.

3. Identification of the existing modules from the module
library.

4. Development of the vector control system
implementation model in MATALB SIMULINK using
the module library.

5. Design of the new modules using System Generator or
VHDL.

6. Simulation of the constructed vector control system
and/or simulation of the model calling the Modelsim
simulator from Simulink environment.

7. Compilation of the developed/simulated model into
VHDL Xilinx Integrated System Environment project.

8. Translation of the project into configuration bits.

9. Testing the vector control system using the prototyping
board.

The methodology weak point is that not every module
can be implemented using the Xilinx System Generator
elements, In such cases one have to implement the new



module — if does not exist in the library — using VHDL
language, or other tools such as Xilinx Core Generator.
Using these development tools one can implement in
VHDL the new library element, and then this
implementation can be imported to the Simulink
environment for further simulations.

As example we can consider the development of the so
called Vector Amnalyzer block. This module was
implemented using VHDL language. The corresponding
code sequence for the VA is presented in Fig, 3. The figure
shows the declaration of the square root and division
functions used for the implementation of the VA.

library ieee;
use ieee.std_logic_1164.ALL;
livrary XilinxCoreLib;
entity sqrt is
per (
x_in: in std_fogic_vecior (31 downto 0);
x_out: oul std_fogic_vecior (15 downto 0);
clk_a: in std_fogic_vector (0 downto 0));
end sqrt;

architecture sqri_a of sgrt is
compenent wrapped_sart
pert (
x_in: in std_logic_vector (31 downto 0);
x_out: out std_logic_vector {15 downtc 0);
clk_a: in sfd_fogic_vector (0 downto Q));
end component;
- Geriguration epatitnabon
for all : wrapped_sqrt use entity XiinkCoreLib,cordic_v2_O(behavioral)
generic map(
c_has_clk=>1,

¢ input_width == 32,

c_pipeline_mode => 0,
G_outpul_width => 18);

begin

UO : wrapped_sqrl

portmap (

X_in=>x%_in,
x_out => x_out,
clk_a=> clk_a);

end sqrt_a;

entity divider32 is
port {

dividend: in std_fogic_vector (31 downto 0);
divisor: in std_logic_vector {15 downto 0);
quot; 6ut std_logic_vector (31 downlo 0);
remil: oul std_iogic._vector {15 downto 0);
c.in std_logic_vector (0 downto 0));

end divider32;

architecture divider32_a of divider32 is
companent wrapped_divider32
port{...)
end compenent;
- Configuration spechication
for all: wrapped_divider32 use entity XilinxCoreLib dividervhi(behavioral)
generic map({
dividend_width => 32,
signed_b=>1,

divclk_sel => 1);
BEGIN
U1: wrapped_divider32
port map (
dividend => dividend,
divisor => divisor, .....)

end divider32_a;

Fig. 3. Square root and division VHDL code sequences.[11]

The VA was implemenled considering the following per
unit equations:

o =yoa+gs: - 3)

: 9q. G
sing = —-; cosa =322, 4
9 &l

where g,, are the input variables and |Q| is the phasor

amplitude.

In the compilation process of the vector control system
one have to consider the targeted chip, since the module
parameters allow to use hardware specific implementation,
One of these hardware specific conditions is the use of
Xilinx Virtex hardware multipliers. If one considers for
implementation this FPGA family, it is recommended to
make use of such multipliers.

Another consideration is the beard FPGA board which
will be used. There is a possibility to adapt any Xilinx
board to the MATLAB SIMULINK environment. At this
moment this is subject of further research.

VL SIMULATION/IMPLEMENTATION RESULTS

In the research work in all the possible tested vector
control systems the simulations were performed with
similar conditions in MATLAB-Simulink environment
using the intellectual property library. The motor data are;
5.5 kW, 50 Hz, 220 V™, 14 A™, 720 pm and 4 pole-
pairs. The motor was started controlled by a DC link
frequency converter and after some time (usually 0.5 sec or
Is after start) the control structure was reconfigured [11].
The results we obtained using this methodology are
presented in the following figures.

Fig. 4 shows the implementation report of the vector
control system compiled in the Xilinx ISE environment,

Device utilizalion summary:
Salected Device : 352000196764
Number of Sfices:
Number of Slice Flip Flops:
Number of 4 input LUTs:

4418 oulof 20480 21%
936 oltof 40960 2%
8174 out of 40860 19%

Number of bonded 10Bs: 192 outol 489 39%
Number of GCLKs- 1 outot 8 12%
Timing Summary;
Spood Graco: 4
Minimum period: 26.005ns (Maximum Frequency: 38.454MHz)

Minimunm input anival ime belors clock:  30.171ns
Maximum output required tima after clock: 43.270ns
Maximum combinational path delay: 48.291ns

Fig. 4. Implementation results of the vector control system [11].

P e v - = " et s

Fig. 5. Current Source Inverter space-phasor diagram,



The implementation was performed using  different
hardware support. One of the used boards was the Triscend
Configurable System on Chip (CSoC) board and the other
was the Digilent FPGA board.

The vector control system is implemented in the FPGA
board. The CSoC board is used for control and configure
the FPGA bhoard. since the constructed system is intended
for run time reconfigurable control systems.

VII. CONTRIBUTIONS

The paper presented a design methodology for vector
control systems, which are implemented using FPGA
chips. The methodology makes use of the library elements
implemented in MATLAB SIMULINK environment and
the System Generator toolbox for Xilinx FPGA chips.

The methodology described here is an original
contribution. Using the library elements any vector centrol
system can be implemented in FGPA system. Further
research should be done to connect the FPGA board to the
MATLAB environment.
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