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Abstract — This paper presents a novel friction
model developed for low velocity regimes. The
model can easily be incorporated in adaptive
control laws because it is linear in parameters.
Adaptive friction compensation method was de-
veloped for DC servo motors using the intro-
duced model. The stability and performances
of the control scheme with the proposed control
law was discussed using Lyapunov techniques.
Simulations also were performed to show the
performances of the applied control algorithm.

I. INTRODUCTION

Friction is universally present in the motion of bodies
in contact. It plays a role in the simplest actions of
living, such as walking, grasping and stacking. In servo
controlled machines friction has an impact in all regimes
of operation. In high precision positioning systems it
is inevitable to know the value of the friction force to
assure good control characteristics and to avoid some
undesired effects such as limit cycle and steady state
error.

Many models were developed to explain the friction
phenomenon [1, 2. The introduced models are based on
experimental results rather than analytical deductions.
Kinetic Friction Model: The classical friction model
were developed toward by Coulomb who discovered that
the friction force depends on the sign of the velocity. So
the friction force can be written in the following form:

Fy = Fosign(v) (1)

where F¢ is a constant and v denotes the relative ve-
locity between the two surfaces in contact.

Kinetic + Static Friction Model: The static friction, in-
troduced initially by Artur Morin, represents the force
necessary to initiate motion from rest and in most of the
cases its value is grater than the kinetic friction. This
effect was introduced in the kinetic friction model:
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_ | 1 ife=0
Fy = Fgn(v) + Feosign(v), n(v) = { 0 otherwise

(2)
where Fg is a constant.
Kinetic + Static + Viscous Friction Model: The viscous
term is the friction component that is proportional to
velocity. This term has a dominant influence when the
contact of the bodies in motion are lubricated with oil
or grace (hydrodynamic lubrication). It was introduced
by Reynolds who studied the friction occurring in flu-
ids. The static plus kinetic plus viscous friction model
nowadays is the most commonly used in engineering:

Fy = Fsn{v) + Fosign{v) + Fyv (3)

where Iy is a constant.

Striebeck friction model: Many servo-controlled ma-
chines are lubricated with oil or grace (hydrodynamic
lubrication). Tribological experiments showed that in
the case of lubricated contacts the simple static +ki-
netic + viscus model cannot explain some phenomena
in low velocity regime, such as the Striebeck effect. This
friction phenomenon arises from the use of Auid lubrica-
tion and gives rise to decreasing friction with increasing
velocities.

To describe this low velocity friction phenomenon four
regimes of lubrications are treated. Static Friction:
the junctions deform elastically and there is no excur-
sion until the control force do not reach the level of
static friction force. Boundary Lubrication: this is also
solid to solid contact, the lubrication film is not yet
built. The velocity is not adequate to build a solid
film between the surfaces. A sliding of friction force
occurs in this domain of low velocities. The friction
force decreases with the increasing of velocity but gen-
erally is assumed that friction in boundary Iubrication
is higher than for Auid lubrication (regimes three and
four). Partial Fluid Lubrication: the lubricant is drawn
into the contact area through motion, either by sliding
or rolling. The greater viscosity or motion velocity, the
thicker the fluid film will be. Until the Auid film is
not thicker than the height of aspirates in the contact
regime, some solid-to-solid contacts will also influence
the motion. Full Fluid Lubrication: When the lubri-
cant film is sufficiently thick, separation is complete and
the load is fully supported by fluids. The viscous term
dominates the friction phenomenon, the solid-to-solid
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Fig- 2: Kinetic+Static Friction

contact is eliminated and the friction is *well behaved’.
The value of the friction force can be considered as pro-
portional with the velocity.

From these domains results a highly nonlinear behavior
of the friction force (see Fig. 4). Near zero velocities
the friction force decreases in function of velocity and
at higher velocities the viscous term will be dominant
so the friction force increases with velocity. Moreover
the friction also depends on the sign of velocity with an
abrupt change when the velocity pass through zero.
For the moment no predictive model of the Striebeck
effect is available. Several empirical models were in-
troduced to explain the Striebeck phenomena: Tustin
model, exponential in velocity e~ 17l/vs Gaussian model
e~(/vs)* Lorentzian model 1/(1 + (v/vg)?). The con-
stant value vg is the Striebeek velocity which describes
the shape of the Striebeck curve. This terms can be
introduced in the previously presented model (3) to ob-
tain a more precise friction model. Note that the static
friction term in the form as in the relations (2) and (3)
is not used because the Striebeck term describes more
precisely the friction phenomena near zero velocities.

Tustin model :
(Fc + (Fs — Fo)e PV¥s)sign(v) + Fyv  (4)
Gaussian model :

Fy =
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Fig. 4: Striebeck Friction (low velocities) |

Fy = (Fo+ (Fs ~Fo)e " )sign(v) + Fyv (5)
Lorentzian model :
Fy = (Fo+(Fs—Fo)1/(14 (v/vsw)?))sign(v) +

Fyu (6)

Remark: Note that at zero velocities the value of fric-
tion force can not be greater than the tangential force
which acts on the junction. Until the tracking force
does not reach the level of the static friction (Fs) the
value of the friction force is equal with the value of the
tangential tracking force. This effect can be introduced
in Tustin friction model as follows:

7, ifT<Fsandv=0
(Fe + (Fs — F¢)e™1PV/vs)sign(v) + Fyv,
otherwise

Fy =

(1)
where 7 denotes the tangential control force.

I1. LINEARLY PARAMETERIZED STATIC
FRICTION MODELS

The parameters of the friction model may change as a
function of normal forces in contact, temperature vari-
ations, humidity, lubricant conditions, material propri-
eties, dwell time and other factors that can hardly be



controlled. {The dwell time represents the time interval
a junction spends in the stuck when the machine is not
moving. It effects mostly the static friction term.) This
is why the parameters of the [friction models should be
considered as time varying and for precise positioning
is not enough an a-priori determination of them. Obvi-
ously the friction parameter variation is a slow process
but it could affect the performances of the machine over
time. This is why the on-line estimation methods are
so popular for friction compensation.

To apply the well known adaptive control schemes for
friction compensation it is desirable that the friction
model could be written in a linearly parameterized form,
namely as a scalar product between a known regres-
sor vector § - and an unknown parameter vector 8p
(Fy = 67E,)-

In the other hand the friction parameters could change
even in the function of sign of velocity. This is why it
is recommended to use different friction parameters in
the positive and negative velocity regimes.

The previously introduced friction models should be
rewritten or modified in such way to obtain the previ-
ously presented requirements (linear parameterization,
different parameters sets for positive and negative ve-
locities) and in the same time to keep the qualitative
characteristics of the original models. To achieve these,
first of all let us introduce the following switching func-

tion:
(1 ifvz0
o) = { 0 otherwise (8)
Note that the function p has the propriety: p{-v) =
1 — p{v):

Kinetic and Kinetic+ Viscous Model: These simple mod-
els could be easily rewritten if we use the switching
function y defined in (8) and we consider different pa-
rameters for positive and negative velocities.

Kinetic friction:

Fy = 65,() (9)
(Fot Foo)U' £4(0) = (u(v) p(=v))*

Kinetic 4+ Viscous friction:

QF=

Fy = 03é.(v) (10)
9r = (Fou Fvs Fo- Fy-)T
£, = (n(v) pl)v p(—v) p(—v)w)"

The subindex '+’ means that the parameter is used
only in positive velocity regime and the subindex '~/
means that the respective parameter is applied only for
negative velocities. Note that the static friction cannot
be incorporated in this models and it cannot be esti-
mated on line because it occurs only at zero velocities.
This is why we need a more accurate model near zero
velocities.

A.  Linearized friction model for low velocities

The model, introduced in this paper, was developed
based on the Tustin model {4). For the simplicity only
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the positive velocity domain is considered, but same
study can be made for the negative velocities. Let us
consider that our mechanical system movesin 0. .. Unae
velocity domain.

Let us consider a linear approximation for the expo-
nential curve represented by two lines: d;, which cross
through the (0, F¢(0)) point and it is tangent to curve
and dg, which passes through the (Vines, F (Umag) point
and tangential to curve. These two lines meet each
other at the wvs,, velocity. In the domain 0...vs, the
dy.,. can be used for the linearization of the curve and
d, is used in the domain vy . .. ¥maez- The maximum
approximation error occurs at the velocity vs,, for both
linearizations.

If we consider the positive part of the friction model
(4), the obtained equations for the d;, and ds, , using
Taylor expansion, are:

di, :Fripiv)=Fs+ 9%}@

= Fg+(Fv—(Fs - Fc)/ﬂs);’“o (11)
day : Frog, (v) = Fy(Umaz) + ?F—fg;—ww — Vmaz)
= Ff(vmaez) + (12)

(Fy — (Fs — Fg)/ug)e vmoa/vs(y — Umaz)

Thus the linearization of the exponential friction model
with bounded error can be described by two lines in the
0...0mar velocity domain:

d1+ : FLl_f+ (’U) = a4 + b1y,

for 0 <v < vy (13)
dz, : Frap, (v) = asq + bayv,

for vsw v < VUmao (14)

Now let us consider two exponential membership func-
tions parameterized in the following way:
e Blv—vsuwy) 1

é1, (v) = P2, (v) =

(15)
where 3 is a large positive constant and v, is the
switching velocity where di, and da, meets each other.
The value of vs,,4 can easily be determined from lin-

earization (13):

14 e—Bv—vsuy)

a; — Qg
Vsw+ = =
by — by

Fg 4 Fi(Umaz) + (Fyv — (Fs — Fo)/vs)evma=/vs
(Fy — (Fs — Fo)/vs)(=1 + e7vmez/vs)

If we apply the Friy, from (13) on the membership
function ¢, from (15) and Fras, on ¢g we can obtain
a new model that has the same behavior as the Tustin
friction model. Moreover it is linearly parameterized
if we consider the parameters of the lines. So for the
positive velocity domain we have:

(16)

Fy () = ar+ 1, (0)p(v) + bryven, (v)p(v) +

a2+ G2 (V)u(v) + baqvde, (V)u(v) (17)



With same train of thoughts a similar model can be de-
termined for the negative velocity domain. Combining
the negative and positive velocity domains the obtained
friction model reads as:

Fy(v) = 67¢, () (18)

where: 85 = (@14 by G2+ bay a1 bi- aa- ba-)T
€, (v) = (1, 1(v) vé1, 1(v) b2, () V2, (V).
&1 p(—v) vy pu(—v) da_p(—v) vgpa_p(—1))T

III. ADAPTIVE COMPENSATION OF THE
FRICTION FORCE IN A DC SERVO DRIVE

To illustrate the applicability of the introduced friction
model a mechanical positioning system were considered.
Let us consider that the mechanical load is driven by
a DC servo motor through a gear-head. The friction
force acts on the load, inside the gear-head and inside
the DC motor.

To determine the equation of motion of the DC servo
motor the rotor current dynamics was neglected. This
can be made when the electrical time constant (L/R)
is sufficiently small (near 1 ms) relative to the used
sampling interval in the control algorithm. In this case
the rotor current (¢) in the function of control voltage
(v) and the rotor angular speed (w) can be written as:

(19)

The equations of motion of the motor using (19) is given
by:

i=(u—cw)/R

Cgt — TfR — Tewt = —Aw + Kt —~ Tyg — Text
(20)

Jrw =
& = w

o denotes the rotor angular speed, 7yg - friction force
which acts inside the motor, Tzt - external torque. The
angular position and velocity of the motor are known
from measurements.

The motor parameters are Jg > 0 - the rotor inertia,
R - rotor terminal resistance, L - rotor terminal induc-
tance, ¢; - the inverse of speed constant, ¢z - torque
constant, 4 = eco¢;/R > 0, K = ¢3/R > 0. These
constants are catalog data for a specific motor and con-
sidered to be known.

The external torque that acts on the rotor can be ob-
tained from:

Teaxt = Tre + Ty /N + Jpwp /N +d (21)

where 7yg - friction force inside the gear-head, ¢y, -
friction force which acts on the load, Jp, is the unknown
inertia of the load, IV is the gear ratio. d represents a
bounded additive disturbance which incorporates un-
modelled dynamics, measurement errors and external
disturbances (|d| < Dy with Dy known).

From (20) and (21) we obtain the equation of motion
of the positioning system:

J&+ Ad = Ku—75 +d (22)
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where J = Jg + Jg + Jr/N in which Jg denotes the
unknown inertia introduced by the components of the
gear and 77 = Tfg + Tjc + 77/N is the sum of all
friction forces that act on the mechanics. The friction
force and the load inertia in the dynamics are consid-
ered unknown.

Let us define the tracking error e(t) = af(f) — ag4(t)
and the tracking error metric S(t) = (% + A)e(t) with
A > 0. aq is the prescribed trajectory, a smooth, twice
differentiable function in time [3].

The control problem can be formulated as follows: de-
sign a control law u such as that the tracking error
metric S(t) satisfles |S(t)| < ® for ¢ — oo where D is a
given precision.

From (22) and the expression of the tracking error S(¢)
we obtain the tracking error dynamics as follows:

JS = Jag—Ae—Aa+Ku—1s+d  (23)
where friction force 7y is modelled using the friction
model (18) introduced in Section I 74 = 6}¢ (@)

The parameters f;, J are unknown, consequently the
control law can be developed using estimated parame-
ters, that are generated on-line by an adaptation rule.
Let us denote the estimation errors and the estimated
parameters as follows: @ =0, —0;, J=J —J

To solve the proposed control problem, let us define the
following control law:

u= (A~ T(8a ~ 2e(t)) +B€ () — ksSa(t)
—Dprsat(S/®)) (24)
with ks > 0 and Sa(t) = S(t) — sat{S{t)/®) where

sat(-) denotes the saturation function. The following
propriety can be easily verified:

Sa =8 for |Sa] = ® and Sa = 0 otherwise. (25)

The values of the friction and inertial parameters can
be obtained using adaptive techniques. The most com-
mon adaptation rule in the adaptive control systems is
the gradient method [3]. To increase the robustness of
the control system a modified gradient algorithm, the
switching-o adaptation law [3] is applied in this paper:

~78,:££i(w)Sa(t) — o(Bi)ve,.0;

~¥a(a — () Sa(t) — o(T)vs T (26)
with ~g,, v strictly positive adaptation gains.

The function « is defined as:

0, if ©; < |6;]
ao(|0:]/©;: — 1), if 16;] < ©; < 2/6:]
0o, otherwise

.

J =

o(B:) =

(27)
where og > 0 and ©; > |4;[.
The closed loop system with the control law {24) for
S > @ can be written as:

J8(t) = J(6q — A2} — ;€ /@)~ ksSa(t)

~(Dagsat(S/®) —d)  (28)



To examine the behavior of the closed loop system let
us consider the following Lyapunov like cost function:

8
1 = 1 =
V(t)=JS t2+~»—J3+§ 62, 29
(t) a(t) b 7 (29)

=1 79;{

The time derivative of the Lyapunov function is given
by:

8
. . T =~ 1 =~ =~
V{t) = JSa(t)Salt) + ——7 JJ+ E —_— efiefz' (30)
7 =1 18y

It can be shown [3] that o(8;)8;0; < 0. Moreover, ex-
ploiting the property (25) we have V() < 0if S(t) < ®.
If S(t) > © the equation of the closed loop system can
be introduced in (30). If we also introduce the adapta-
tion laws (26) we obtain:

V)= — ksSa(t)? — Sa(t)(Darsat(S/®) — d)
—_— 8 —~ ~ -
+ (D) TT+)_ol05:)05:05: (31)
=1
Because it was assumed that S(f) > & we have sat(S/®)
sign(S) = sign{Sa). Using the following simple rela-
tion that if |d| < Dpr = dSa < Dar|Sal-
At the other hand if og > 0 from the definition (27)
results a(@)@,@ < 0. From these observations yields:

V(t) < —ksSa(t)® (32)

Notice that (32) is also valid for [S(t)] < ®. Since
V(t) is a positive and non-increasing function, therefore
V(co) is finite and well defined.
Thus, if SA(0), J(0) and 8(0) is bonded = Sa(t),
J(t) and 8(t) € Loo Y t > 0.
If 5a(t), e(0) and &(0) is bounded = e(t) and é(t) €
L.
If e(t), é(t), ca(t) and dq(t) € Lo = aflt), &(t) € Loo.
From (24) results that if J, 8, dy, é(t) and Sa € Loo
= u(t) € Leo. .
From (28) results that if Sa(t), J(t), 8;(t), ca(t), é(t)
u(t) € Lo = Sa(t) € Leo.
From:
f Salt)2dt < i/ V(t) = VAD) = V) s
0 ks Jo ks

(33)
results that Sa(f) € La.
Because Sa(t) and Sa(t) € L and the relation (33)
holds, by Barbalat’s lemma Sa(t) — 0 when t — oo,

consequently the inequality |5(2)] < @ is obtained asymp-

totically. Thus the control law {24) with the adaptation
law (26) solves the formulated control problem.

IV. SIMULATIONS AND RESULTS

In order to test the applicability of our theoretical re-
sults we performed simulations on a DC motor to which
a load is attached through a gearbox. The inertial load
is also in contact with an external surface, which gives
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an external frictional force. For the motor the follow-
ing parameters were used: Jg = 41.9 x 1077 kg/m?,
A = 1.508rad/secV, K = lrad/secNm. The gear
ratio was taken as N = 66 and the external inertia
J = 0,001kgm?. The friction force was modelled using
the relation (7) with the following parameters: Fg =
0.0015 Nm, Fz = 0.001 Nm, Fy = 0.01 Nmsec/rad,
vg = 100 rad/sec.

The prescribed trajectory is a sinusoidal one with small
amplitude which assures that the mechanical system
moves both in positive and negative velocity regime
near zero velocities.

dq(t) = wq(t) = sin(10¢) [rad/sec|

¢
aq(t) = f[} w(ridT [rad]; é&q(t) = % [rad/sec?]

The control objective is to track this prescribed posi-
tion, such that the tracking error metric S{t) < 1073,
The parameters of the controller were chosen as follows:
A=10, ks =20, Dy =1E -4, $=1E -3

The friction was modelled in the control law using the
relation (18). All parameters of the friction model was
departed with at least 50% from its real values. The
simulation results in Fig. 7 and 10 shows that the con-
trol law guarantees very precise tracking for position
output. The convergence of the friction parameters in
the positive velocity regimes during the adaptation is
also presented (Fig. 5, 6, 8, 9). Due to membership
functions {15) it can be observed that the parameters
determining the behavior of friction force are tuned only
when the plant is in the corresponding velocity regime.

V. CONCLUSIONS

The paper deals with the problem of adaptive compen-
sation of friction force in DC servo motor controlled
mechanical positioning systems. A novel friction model
for low velocity regime is presented which has the use-
ful property that it can be written in a linearly param-
eterized form, hence the well known parameter estima-
tion algorithims can be applied to determine its parame-
ters. The proposed adaptive tracking control algorithin
which incorporates the introduced friction model guar-
antees that the tracking error remains bounded with
known bound. Simulations shows good tracking perfor-
mances and parameter convergence of the control law.
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Fig. 10: Velocity tracking error



