Prototyping of Boolean Function Classification Schemes for Lossless Data
Compression using FPGA

M. L. Reaz, F. Mohd-Yasin, M. S. Sulaiman, K. T. Tho, K. H. Yeow
Faculty of Engineering
Multimedia University
63100 Cyberjaya, Selangor
Malaysia
mamun.reaz@mmu.edu.my

Abstract — In this paper, we present the realization of Boolean
function classification schemes on Altera FLEX10K FPGA
device for lossless data compression, The compression
algorithm is performed by incorporating Boolean function
classification into Huffman coding. This allows for muore
efficient compression because the data has been categorized
and simplified before the encoding is done. The design is
followed by the timing analysis and circuit synthesis for the
validation, functionality and performance of the designated
circuit which supports the practicality, advantages and
effectiveness of the proposed hardware realization for the
applications. The average compression ratio is 25% to 37.5%
from numerous testing with various text inputs with a
maximum clock frequency of 27.9 MHz.

I. INTRODUCTION

The term Data Compression refers to the process of
reducing the amount of the required data representing a
given quantity of information. Data compression is
increasingly more and more important in the development
of computer and data communications technology.
Various data compression technologies have been
developed since the past few decades, using different
algorithms for different applications. Some of the data
compression techniques are Null Suppresion, Run-Length
Encoding, Huffman coding, Arithmetic coding, Lempel-
Ziv-Welch coding, Discrete Cosine Transform, Joint
Photographic Expert Group and Boolean Compression
algorithm [1].

Boolean function classification technique has been
traditionally designed for digital circuit applications. The
main feature of this technique is due to the fact that the
functions belonging to some classes may be implemented
more efficiently than the general sum of product
implementation. Boolean function classification plays an
important role in the field like technology mapping for
digital circuit design, function mapping for minimization
and the development of universal logic modules {2].

The FPGA offers a potential alternative to speed up the
hardware realization [3, 4]. From the perspective of
computer-aided design, FPGA comes with the merits of
lower cost, higher density, and shorter design cycle [5]. It
comprises a wide variety of building blocks. Each block
consists of programmable look-up table and storage
registers, where interconnections among these blocks
programmed through the hardware description language
[6, 7]. This programmability and simplicity of FPGA made
it favourable for prototyping digital system.

In this work we proposed the {ramework of FPGA-based
hardware prototyping of Boolean compression algorithm
by incorporating Boolean {unction classification into

Huffman encoding [8]. By performing the Boolean
function classification, the binary data is grouped into their
classes and through Huffman encoding, the compression is
done in a more efficient way because the data has been
categorized and simplified before the encoding is done.
The result has higher compression ratio. We had studied
the cxisting Boolean classification schemes that are
suitable for using in data compression. We also studied
the new and alternative classification schemes that can be
implemented in the algorithm. After finalizing the
algorithm, the VHDL is selected as the hardware
description language to realize the scheme as VHDL
design enviromment permits extensive simulation for
verification of the algorithm [9]. In the computation of
method, the problem is first divided into small pieces, each
can be seen as a submodule in VHDL. Following the
software verification of each submodule, the synthesis is
then activated that performs the translations of hardware
description language code info an equivalent netlist of
digital cells. The synthesis helps integrate the design work
and provides a higher feasibility to explore a far wider
range of architectural alternative. In this study, to validate
the effectiveness of the method, various text inputs has
been used. The method provides a systematic approach for
hardware realization, facilitating the rapid prototyping of
Boolean Function Classification Schemes for Lossless
Data Compression.

II. ALGORITHM DEVELOPMENT

In Boolean function classification algorithm, 16-bit of
data bits are extracted from data input. The first 16-bit
Boolean block is then used to generate fractal. The fractal
is then used to match with the fractals for all other bits in
the data source. If there are identical matches between the
first fractal with the fractals in the data source, the counter
for the fractal is incremented. After all the data bits are
matched with the first fractal, the first unmatched 16-bit
data will be used as the next fractal, and to be matched
with the remaining bits of data. Again, when there are
matches between the second fractal with the data source,
the counter for the second fractal will be incremented. The
same algorithm continues until there is no more unmatched
data source. Figure 1 shows the flow chart for the
algorithm as explained.

When there is no more unmatched data source with the
fractal, the algorithm continues with the Huffman encoding
to compress the classified data source. From the counters
for each of the fractals, the frequency of occurrence for
each fractal can be determined. Based on Huffman
algorithm [10], the data bits with higher number of

420

occurrence are to be encoded with shorter codes, whereas
the data bits with lower number of occurrence are to be
encoded with longer codes. The same concept applies in
this compression. For the fractal with higher number of
occurrence, the fractal is encoded with a short code and
saved with a header to enable the data to be retrieved or
decompressed. This is to be explained in the
decompression section. Each of the fractals is encoded
using Huffman encoding and this completes the Boolean
compression. Figure 2 shows the flow chart for Huffman
encoding algorithm.

I Readihe first 1600 Boolean black fror s Suice l

i Gann factad for thedrst Boolamn I:io:-q

arh the inscha 5 o P rost o the source and

¢\ E unimsidied T8 b2 dialeh) e

2 &
g e
yEs

{ Comaye roaang e nest unmekchad 1Ebi data)

; ¥
{3enerats Fraksd Tor unmatre TE-00 88 |
: ¥
~=—] bt Trousl wih e dita WL e InCrsment T]

Figure 1: Boolean function classification algorithm

Saves the Halfrves opde

E T n
A

[Petsma ittt |

T

Figure 2: Huffman encoding algorithm

The decompression algorithm involves re-building the
Huffman tree from a stored frequency table in the header
of the compressed file, and converting or decompressing
the bit streams of variable encode length into characters.
Beginning at the root node based on the header stored in
the compressed data, and depending on the value of the bit,
the right or left branch of the Huffman tree is taken, and
then return to read another bit for the next branch, When
the node selected is a leaf, which means that it has no right
and left child nodes, its character value is written to the
decompressed file and go back to the root node for the next
bit. This algorithm is continued till all the compressed bits
of variable encode length are decompressed. Figure 3
shows the decompression algorithm.

Eetreve the header infommation
af firsy encoded defu
¥

Read the rovt nods by
A . T

Read the fret branch pode |
y T -
BRaad -l besmich nods

¥

s 12 oaf o, Drosaed i
ot misaded dais

Figure 3: Decompression algorithm
III. VHDL IMPLEMENTATION

The design started with two blocks, compressor and
decompressor. The input of the compressor is integer
stream, where 8-bit binary data is read in as input for the
compression. The data input is classified and compressed
into another form. The classified data is shown in its
respective class, which is represented by the 3-bit class
output pin. The output data is a variable-length Huffman
code, which is the compressed data. This compressed data
is available from output pins. Each 8-bit data from the
input will be compressed according to the look-up table
built. The input data into the decompressor chip is a bit
stream with length of 1-bit to 6-bit, and the class of 3-bit.
The output of the decompression is an 8-bit data.

VHDL implementation had been performed following
the algorithm discussed in section 2. The implementation
is started by building a statistical lookup table for all the
possible text inputs, ranging from a to z for small case, A
to Z for uppercase and some special characters like
semicolon, each with specific class. An ASCII-to-binary
program written in javascript is used to convert the text
input into binary bits. The ASCII table for each of these
characters is also referred. This ASCII table is used as a
reference to specify the bit patterns for each of the input
character. The bit patterns for each of the input character
are important in the formation of the lookup table
consisting of all possible text inputs. Since the compressor
can recognize 71 characters, these characters are classified
into their respective classes. After determining the size of
the class, the next step is to determine the characteristic of
the class. The equations to determine the class using
definition for direct symmetric Boolean function is

f(z) = f(x, y) = f{y, x) €8]
where x is initialized to 001, and y = m-1, where m is

the length of the encoded bits. x is initialized to 001 to
represent the class for encoded data with length of 1 bit.

421

Thus.

fiz) = f{001)5, (m-1)10) = {{m-1)10. (001)2) (2)

for the function to be a direct symmetric function. 1{z)
represents function for classification of the Boolean
function derived using definition for direct symmetric
Boolean function.

To perform the compression, the input data will first
match with all the predefined inputs in the lookup table.
When the input data is matched successfully, the length of
the encoded output will be shown, and the output will be
displayed. The output is of variable length. Thus, careful
declaration of the vector size is needed to cnsure correct
compilation and simulation. The possible length of the
encoded output ranges from 1 bit to & bits, which is lesser
than the uncompressed form of data for each character,
which is 8 bits.

For the decompression of the encoded data, the class of
the encoded data and the compressed data are used as the
inputs to run the decompression program. Again, the
compressed data may be of different length, which varies
from 1-bit to 6-bit. The inserted class and compressed data
will then be matched with all the predetined data in the
lookup table. When the inserted class and compressed data
matches with the predefined data in the lookup table, then
the output, which is the original data before compression
can be obtained.

IV. SIMULATION

The system was coded in lEEE-compliant VHDL and
compiled and simulated using the MAX+PLUS2. This
provides an opportunity to detect and correct errors early in
the design process [11, 12]. Both compression and
decompression modules was designed and tested in
isolation before being incorporated into the higher levels of
the design.

Both compression and decompression modules were
first sirnulated individually to verify their functionalities.
Fach module was fed a fix inputs and the correct outputs
were observed. Afier the successful individual simulations
were performed, the modules were integrated logether.
This enables detailed simulation at the top level.

The results are generated using waveform editor. The
clock signal and oulputs are shown in the timing diagram.
One example of the simulation was shown in section 4.1
and 4.2 using the 72-bit input binary data.

A. Compression Simulation

In Figure 4, the generated data inputs are 00110101,
00110110, 00110111, 0110001t, 00111001, 01101011,
01101100, 01110000, and 01110111, The encoded outputs
are 0000, 0001, 0010, 1001, 0100, 1060, 1011, 0111, and
1110. The outputs are exactly the same as the output in the
lookup table. This yields that the compression is
performed correctly. In this simulation, the compression
ratio is 50%. The best compression ratio for this algorithm
is 87.5%, which is the case when all the inputs are having
encoded output of 1 bit. However, this rarely occurs since
text inputs usually consist of various different characters,
which have their respective class and output bits as defined

in the lookup table. The average compression ratio is 25%
to 37.5% from numerous testing with various text inputs.
This is verified from the lookup table as well, since class
101 and class 110 have most input texts, and their encoded
bits range from 35 bits to 6 bits.

Figure 4: Sirnulation results for compression

B. Decompression Simulation

In Figure 5, the input is the compressed data and class,
The compressed data are 0000, 0001, 0010, 1001,0100,
1600,1011, 0111 and 1110. The outputs are 00110101,
00110110, 00110111, 01100011, 00111001, 0110101t,
01101100, 01110000, and OL110111. The outputs are

exactly the original inputs which verify the correct
functionalities of the algorithm.

S s 15045 s

gigigigl J_' pipEgigiy

I
Rl R

i

o ST LT LT T I T T
1{5—"5\355 Lﬁmﬂ i

5= adpuDaiad 0000 1000 2 R T
D it EEER AT R I R

Figure 5: Simulation for decompression

o
(8]

V. SYNTHESIS

In regard to the designated hardware realization, The
VHDL code is synthesized by considering Altera
FLEXIO0K: EPFIOKIOLC84-3 FPGA «chip on LC84
package. The physical hardware layout is generated using
the synthesis tool Synplify version 7.0. The FLEX [0K
family provides the density, speed, and fcatures to
integrate entire systems, including multiple 32-bit buses
into a single chip. A comparatively low critical path
frequency was achieved which was 27.9 MHz. The design
took a minimum resource ie. 366 logic cells, which is
63.54% of the device EPFI0K10LC84. Table 1 shows a
details report of the usage of resources. Partial view of
sheet 3 (out of 15) of the top level RTL view and the sheet
3 (out of 15) of top-level technology view are shown in
Figure 6 and 7 respectively.

TABLE 1
THE USAGE OF RESOURCES

Logic resources: 366 LCs of 576
(63.54%)

Logic Resources
(EPFT0KI10LC84-3)

Number of Nets: 444

Number of Inputs: 1843

I/O cells: 66

Cells in logic mode: 323

Cells in cascade mode: 43

=S I—.i?,ﬁi.tu

Lt
e e) LT SRS
effimedita 23— | smliap ok nt

e ey aldaly 317
. Ao, e
e
. o
P onamues 7
% L— CEd

= — }_i
- | | i Rl ::: i
—:!]] ey {_fup'sl

fhicnuana s e :
. ot ol impellaby AT e tlaly 4
I
L =
2y "_[']———.5}"— ey
d ; L Ly /R BTN AT
saf ispetialgfyeLimpabdat s iematlale et inpeidat sl
(R ==
s Tepe Wil 157
L v ey =
e ienn ol 102

Figure 6: Top level RTL view - partial sheet 3 of 15

e
n
R -~
b : o
l—% +
= |
— & e
b b
R e fd o
by
b3t = @ e Louied
¥ H o .
q%:: - 5 - - P
=) i Do,y
Focc oo == n g
] b e 1032 ospaze
* = = e
. & | [Irgs
s A
R 4w | e
= 2
31 1 e
G
il = el
HelS =
T = i RN
—1‘ 1 = Jﬂ'. I ipatntst,]
) {48 37 wrcul ety e
i mn ompns ==
]
i g I
a
= bl vor
= H g,
=
= E T
- H
; b ,
- o_,n?.!g
I B

Figure 7: Top level technology view — sheet 3 of 15
VI. CONCLUSION

The objective of this project was to hardware
prototyping of Boolean compression algorithm using
VHDL. The Boolean function classification schemes are
incorporated into Huffman coding for a better compression
algorithm. The modules were successfully compiled,
simulated and synthesized with achieved maximum
frequency of 27.9 MHz and a minimum resource usage of
63.5% of the total cells. The hardware implementation
demonstrated complete, correct functionality and met all
the initial system requirements. Currently we are
conducting further research to reduce the hardware
complexity and increase the critical frequency in terms of
synthesis by improving the VHDL coding.

VII. REFERENCES

[1] Visweswariah, K., Kulkarni, SR. and Verdu, S,
“Universal Coding for Nonstationary Sources”, IEEE
Transaction on Information Theory, Vol. 46, No. 4,
July 2000, pp 1633-1637

Chip-Hong Chang, Bogdan J. Falkowski, “Operations
on Boolean Functions and Variables in Spectral
Domain of Arithmetic Transform”, IEEE
International Symposium on Circuits and Systems
(ISCAS "96 — Connecting the World), Georgia, 1996,
Vol. 4, pp. 400-403.

Alexandre Schmid, Yusuf Leblebici, and Daniel
Mlynek, “Hardware Realization of A Hamming
Neural Network with On-Chip Learning,” [EEE
International Symposium on Circuits and Systems,
Monterrey CA, 1998, vol. 111, pp. 191-194.

[4] B. K. Fawcett, “Tools to Speed FPGA Development,”
IEEE Spectrum, November 1994, vol. 31, pp. 88-94.
C. E. Cummings, “Verilog Simulation Xilinx
Designs,” Proc. Int. Verilog HDL Conf., Santa Clara,
CA, 1994, pp. 93-100.

A. Rushton, VHDL for Logic Synthesis, Wiley, New
York, 1998.

B. K. Fawcett, “Tools to Speed FPGA Development,”
IEEE Spectrum, November 1994, vol. 31, pp. 88-94.

[2]

(3]

(5]

(6]
(7]

423

ty

19]

Chien-Chung Tsai, Malgorzata Marek-Sadowska,
“Boolean Function Classification via Fixed Polarity
Reed-Muller Forms™, IEEE Transactions on
Computers. 1997. Vol. 46. No. 2, pp. 173-186
Mamun Bin Ibne Reaz, Sayed Zahidul Islam, Mohd.
Alauddin Mohd. Ali, Mohd. Shahiman Sulaiman,
“FPGA Realization of Backpropagation for Stock
Market Prediction”, Proceedings of the 9"
International Conference on Neural Information
Processing, Singapore, 18-22™ November, 2002, Vol.
2, pp 960-964.

[10] Huffman, D.A., “A methed for the Construction of

Minimum Redundancy Codes,” Proceedings of the
Institute of Radio Engineers, New York, 1952, pp.
1098-1101

[11] R.D.M. Hunter, “Introduction to VHDL”, Chapman

& Hall, Summit Design Inc., USA, 1996, 482 pages.

[12] Peter J. Ashenden, *“The Designer’s Guide to VHDL”,

Morgan Kaufmann Publishers Inc., San Francisco,
California, 1996, 688 pages.

424

