Special Design Tools on FIFO-based VLSI Target Architectures and their
Application

Péter Keresztes
Széchenyi Istvan University
Egyetem tér 1.Gyér,

Timét Hidvégi
Széchenyi [stvan University
Egyetem tér 1. Gyér,

Gheorghe Sebestyen
Technical University of Clyj
str. G. Baritiu nr. 26-28 Cluj,

Hungary Hungary Romania
kereszip@sze. hu hidvegi(@sze.hu gheorghe.sebestyen(@ cs.utcluj.ro
Abstract scheme for the FIFO cell utilises the charge-storage

This paper proposes a new target architecture, mainly
for the implementation of digital signal processing
algorithms, which consists of multi-direction FIFQ
memories as main components, and a design-
environment, which makes a semi-switch level logic
simulation of extracted schematic descriptions
possible. This target architecture can be reached
through a special value-trace method, which was
proposed by the author in an earlier paper. The
efficiency of the FIFO-based architectures depends on
the simplicity of the basic cell of FIFO. A very simple

1. FIFO-BASED STRUCTURES, AST/O-
CONSTRAINED TARGET ARCHITECTURES
FOR VALUE-TRACE BASED HIGH LEVEL
VLSI SYNTHESIS

The concept of value trace was introduced by Snow
and McFarland [1] [2], and it is used in one of
HLS systems [3], in the CMU's System Architect
Workbench (SAW), which is one of the first HLS
systems. In SAW, the input is an ISPS description,
and the value trace (VT) is defined as a combined
control- and data-flow graph. VT-graph is an

effect of an input of the CMOS gates, and it is
composed by CMOS transmission gates and inverters.
If the final verification of the FIFO-based VLSI
circuits is a logical simulation of the schematic
description previously proved by an LVS (Layout
Versus Schematic) program, special multi-level
logical models are necessary. These models have to be
such as to enable their simulation to detect the typical
design errors. A new VHDL package described in the
paper consists of a new multi-value model for the type
’bit’, and semi-switch level component models. The
package was tested in a design process of a digital
CNN array processor chip,

intermediate representation transformed from the
ISPS behavioural description, and it is the source of
scheduling and allocation. The value trace method
itself means the transformation from ISPS
behavioural description into VT-graph. The method
introduced by an earlier work of author is similar,
but the target description is a pure, event driven
data-flow description, given properly in a
concurrent VHDL block [4]. Consider now a very
simple example as illustration.

program EXAMPLE (a, b, c,d : in;
% ¥:out)
variable u, v ;
begin
read (a, b, c, d);
=a+h;
u:=2*u;
vi=h*d;
vi=h-v;
=u*c
yi=v *d;
write(x, ¥);
end

VT _DFB_OF EXAMPLE : block
begin

ul == a0 + h0;

u? <=2 *h0;

vl == h0 * d0;

v2 <= b0 - v1;

xl <=ul * cll;

vyl <= v2 * d0;
end block;

Program I. A simple algorithm description and its VALUE-TRACE DATA-FLOW BLOCK

4

0

Naturally, there are many tasks, in which to obtain
a pure data-flow block is impossible. At the same
time, many digital signal assignment algorithms
consisting of iteration steps of the same sequence of
computations, and can be described with for or
while type loops, are easy to transform into pure
VT-DFB descriptions.

Target architectures play a fundamental role in the
high-level and system level synthesis of digital
systems. A target architecture defines a hardware-
structure in terms of particular units, their
parameters and the interconnections between them.
A target architecture can be considered to be an
optimum for a given behavioural description and a
given set of constraints. The selected target
architecture depends on the abstract level
behavioural description and the constraints. At the
same time, the target architecture determines the
algorithm of synthesis procedure. Consider the
implementations of the EXAMPLE with two kinds
of value-trace based target architectures applied for
implementation of EXAMPLE given in Fig.l. In
the first implementation, the number of function
units is taken into account as primary constraint,
while the recovery time in the second one. The
disadvantage of the second architecture is the great
number of function units, but the short time
between two tasks (recovery-time) is a significant
advantage.

A third kind of value trace based target architecture
is derived from the primary constraint, which is

given for the number of /O ports. In this case, the
VT-DFB is decomposed into generations. Each
generation of value-signals is rcpresented by a
processor-stage. A stage contains an INPUT-FIFQ
(IF), a VALUE-FIFO (VF), an OPERAND-FIFO
(OF) and a controlled function unit (CFU). A more
complex solution is needed, if the generations of
the value signals are decomposed into sub-blocks
because of the necessity of further decreasing of
the input-output buses. The consequence is the
extension of VALUE-FIFO with a new, depth
dimension.

Figure 2. shows the simplest version of this
architecture for the implementation of EXAMPLE.
The input data (a0, 50, ¢0, d0') enter into the IF of
the first stage. When the IF is full, the data are
transferred into the OF. Simultaneously and
synchronously with filling of the results of the first
operations (ul, vi) from the output of CFU, the
input data of the first task are loaded into the IF of
the second stage, and input data of a new (second)
task are loaded into the IF of the first stage. Figure
2. shows the stages of the third type VT target
architecture of EXAMPLE in successive phases in
operation. It is shown that at the output of the third
CFU, the values of the third-generation (x1, yI) are
obtained as output data. The most applied building
comporent of the I/O constrained VT architectures
is the multi-direction FIFO.

inputports
la0boc0do] || uL,vi || w2, v2 |RG 2
- i)
FUs & "%
4 &
Lulvi ||| w2 ||| xl,y1 [RG2
outpLt ports
a.

constrained target architecture (b).

431

input ports
T () [
: o,
a0,b0,c0,d0 E?:ﬁ?,dﬂ ul,\g RG L
< _J -
Fls FUs Fls
<+ = L% - L%«
e I I
0,c0,d0 c0, do
ul vl uZ, v2 xl,yl |RG2
) U
oultput ports

b.

Figure 1. Two implementations of EXAMPLE. A FU constrained target architecture (a), and a recovery-time

II.A SIMPLE CHARGE-STORAGE
FIFO CELL

Figure 4. shows a bit of the basic cell of a multi-
direction FIFO. Inserting this stage into an array
makes it possible to shift data vertically from two
sources (D1, D2) and horizontally from source D3.
The operation of this type of FIFO cells is based on
the charge storage of capacitor C, which represents
the input capacitance of the first inverter. The
control of a shifting-step consists of a cycle of non-
overlapping pairs of impulses. Between the shift

1 (201607 S0Td0]

b0
a0
& &

+

and the inverted-shift, and between the hold and the
inverted hold pairs, the sampled logical level is
stored by capacitor C. The basic problems of a
logical-level simulation model are as follows:

e The behavioural model of the transmission gate
has to mirror the behaviour of the interconnected
outputs. The solution of this problem is the
introduction of a multi-state, new bit-type with a
strength-controlled resolution function.

o The behavioural model has to mirror also the act
of faulty, not completely controlled transmission
gate. For example, if the p-MOSFET

Bl : ul <= a0 + ho;
vl <= b0 * d0;

B2:u2 <=2 *ul;
v2 <=0 - vl;

B3:xl<=u2 *c0;
vyl ==v2 * d0;

VF

output ports

Figure 2. The implementation of EXAMPLE with an I/0 constrained target architecture

is opened with a low level, but the high-
level signal’s connection to the gate-
electrode of the n-MOSFET is missed, and
the input to be transferred is low, the output
has to be at a weak logical low level (w0) .

e Among the values of the type "newbit’ so
called ’stored logical levels’ (51, s0) have to
be inserted into a position of sufficient
strength.

o The input gate electrodes of the logical
gates have to act as capacitors with a given
current discharging parasitic conductance.

I A VHDL PACKAGE FOR MODELLING
CHARGE-STORAGE FIFO CELLS

The logical simulation of charge-storage FIFO cells
does not require bidirectional switch level VHDL
models, one-directional switching models are

satisfactory. At the same time, the modelling of
charge-storage effect is necessary.

The logical levels of the type ‘newbit’ ordered by
the binary relation ‘dominates on’ are shown in
Figure 3. Level 4 dominating B means that a driver
which is forcing 4 on the node, on which another
driver is forcing B, A is the stronger driver. Logical
level ‘l/’ represents a contradictorily undefined
level. Logical levels *0" and ‘I” correspond to the
classical logical levels, and with the exception of
*U/’, they are the strongest levels. The weaker levels
‘w0’ and ‘wi’ represent such logical levels, whose
values of voltage have changed toward the voltage
of the complementary level, but the so called
comparison level is not exceeded. (See the case of

INPUT <=

Figure 3. The levels of ‘newbit’ ordered by the
relation ‘dominates on’

The VHDL description of the package is given in
the APPENDIX.

1V. VHDL MODELLING OF FIFO-CELL

The package ‘newnstd’ and the component models,
which are based on it, are capable of detecting the
most common control and

433

a partly-opened transfer-gate above). With the weak
logical levels also the low-current drivers can be
described. In this way, ‘quasi-n® and ‘quasi-p’
CMOS gates, and their precharge-evalution
variants can be modelled. Levels *s(” and ‘si°
represent the stored values.

A node modelled with the stored levels is an input
of a logical gate. The concurrent signal assignment
statement for target ‘/NPUT” holds a stored level
below the corresponding strong or weak level, but
when the drivers goes into a stored level, the node
‘INPUT” goes in ‘Z’ after a delay-time, which
represents a storage time in this case. The weakest
logical level *Z’ represents the well known floating
state.

s1 when (INPUT ="'1' or INPUT = w1) else
s0 when (INPUT ="'0' or INPUT = w0) else
Z after 100 ns when INPUT = s1 or INPUT =50 else
Z;

tLVDD
INPTIT QUTRUT
— Iy —P
TGNE:’
GATEN VDD
Ll
INPUT QUTRPUT
— TRG —

GATEP GND

Figure 5. Basic logical building elements of FIFOs

instance errors in charge-storage type FIFO arrays.
Not only the typical control errors listed in point 2
can be obscrved but also the unbounded power-
supply nodes in the simulation. The latter is made
to be possible by the fact that the power-supply
nodes of the components are considered as logical
inputs.

(Sec Figure 5.)

Figure 4. Scheme of the charge-storage FIFO cell

V. APPLICATIONS OF PACKAGE ‘NEWNSTD’

The design environment described in the above
points was used in designing a 3 x 2 digital CNN
processor array. The architecture of a single
processor itself was published earlier. It is easy to
recognize in Figure 6. that the most frequently used
parts of the architecture are FIFO units. The
schematic entry and layout design parts of the

CADENCE-QOPUS system were applied in chip
design. After the proving of the equivalence
between the extracted schematic and the layout
descriptions, a final VHDL simulation was
executed to detect the design errors. The package
and the models described above and given below in
the APPENDIX proved to be suitable.

IBUS1L IBUS2 IB1IS3
CT T Tl] [B EOEE B o Y Y O O S R
T'IXEL FIFO BIAS FIFO TEMP-SEL FIFO
-.([:—\' - ~
R o O N 7 P ISP O e
= = =
— [T T I [--22T7 J|[_}
BT W i) S W e | G—
fL_'lLJ e ——— =
¢ I [N 2
£ 0 .t 15
16 template units
4-level pipeline
arithmetic wmit
<+ OBUS3

OBUSL Jy

EBusz

Figure 6. An emulated digital CNN processor unit

434

VI. REFERENCES

1.P. Keresztes
Value Trace VHDL Blocks and Their Application
in High Level Synthesis
Proc. of 2™ Workshop on Libraries, Component
Modeling and Quality Assurance , Toledo, Spain,
April 1997. pp. 225-232

2. K. Kordoc, M. Biotteau, E. Cerny
Switch-Level Models in Multi-Level VHDL
Simulations
Proc. of the First European Conference on
VHDL, Marseilles, Sept.1990.

3. A.G, Stanculescu, A.S, Tsay, AN.D.
Zamfirescu, D.L. Perry
Switch Level VHDL Descriptions, I[CCADS&9.

4 A Zardndy, P. Keresztes, T.Roska, P.Szolgay,
An emulated digital architecture implementing
the CNN Universal Machine
Proc of IEEE CNNA'98, London, pp. 249-252,
1998.

APPENDIX

package newnstd is
type nnewbit is (Z, '0, '1', wl, w1, 50, s1, U);

~'0', '1" : strongest classical logical levels;

- 50, s1 : stored logical levels;

--wi, wl : weak logical levels;

— Z : floating (third) state;

-- U : undelined state; (The signal having at U, is not Z , but
uknown)

type nnewbit_vector is array (natural range<=) of nnewbit;
function resolved (srcs : nnewbit_vector) return nnewbit;
subtype newhbit is resolved nnewbit;

type newbit_vector is array (natural range<>) of newbit;
subtype oldbit is newbit range Z to '1';

type oldbit_vector is array (natural range<>) of oldbit;

end newnstd;

package body newnstd is
function resolved (srcs : nnewbit_vector) return nnewbit is
variable num@, num1, s0num , slnum, wlnum, wlnum,
zoum, unum ; natural := 0;
variable v : newbit := Z;
begin
foriin sres'range loop
if sres(i) = '0' then num0 := num0 + 1;
elsif sres(i) ='1' then numl :=numl + 13
elsif sres(i) = s0 then s0num := sOnum + 1;
elsif sres(i) = s1 then sInum := slnum + 1;
elsif sres(i) = wl then wlnum ;= wlnum +1;
elsif sres(i) = wl then winum ;= wlnum +7;
elsifl sres(i) = Z then znum ;= znum + 1;
else unum = unum + 1;

435

end if;
end loop;
if unum > 0 then v := U; elsif
unum = 0 and num0 = 0 and num1 >0 then

v :="1"; elsif

unum =0 and numl =0 and numf >0 then
v i="0"; elsif

unum = 0 and numl > 0 and num0 >0 then
v = U; elsil

urtum = 0 and numl =0 and num0 =0 and wOnum > 0 and
wlnum = 0 then v := wi; elsif
noum = 0 and num1 =0 and num0 = 0 and winum = 0 and
winum > 0 then v := wl; elsifl
unum = ¢ and num1 = 0 and num0 = 0 and wlnum = 0 and
wlnum= 0 and slpum= 0
and sOnum > 0 then v ;= s0; elsil
unum =) and num1 = 0 and num0 = 0 and wlnum = 0 and
wlnum = {0 and sInum > 0
and sO0num = 0 then v := s1; elsif
unum = 0 and znum = srcs'length then v := Z;
else yi=17;
end if;
return v;
end resolved;

library work; use work.newnstd.all;
entity INV is
port (INPUT : inout newbit;
OUTPUT : inout newbit;
VDD : in oldbit;
VSS : in oldbif);
end;
library work; use work.newnstd.all;
entity TRG is
port
(INPUT : in newhit;
QUTPUT :inout newbit;
GATEP : in oldbit;
GATEN : in oldbit;
VSS : in oldbit;
VDD: in oldbit);
end;

library work; library work: use work.newnstd.all;
entity FIFO_CELL is
port(VDD, VSS : in oldbit;

D1, D2, D3 ; inout newbit;

shift v1, shift_v2, shift_h, hold,

nshift_v1, nshift_v2, nshift_h, nhold : in

oldbit;

Q : inout newbit);
end FIFO_cell;

architecture BEH of INV is
begin
INPUT <= 51 when (INPUT ="1" or
INPUT = wl) else
s0 when (INPUT ='0' or INPUT = w0) else
Z after 100 ns when INPUT =51 or
INPUT =0 else
Z;

OUTPUT <='0" after 100 ps when (INPUT ='1" or INPUT
= w1 or input=s1) and VDD ="1' and VSS ='0") else
1" after 100 ps when ((INPUT = "0 or INPUT = w0 or
INPUT =s0) and VDD ="1"
and V88§ ='0") else
U;

end BEH;

architecture BEH of TRG is
begin

QUTPUT <= U when (VDL ="0" or
VDD=Zor V8S="1'or ¥S5=2)
eise
INPUT after 100 ps when (INPUT /=s1 and
INPUT /=50 and
GATEN ='1" and GATEP = '0")
else
Z after 100 ps when ((INPUT =sl or
INPUT = s0) and
GATEN ="1"and GATEP ="0")
else
'1" after 100 ps when (INPUT ='1" and
GATEN ="' and GATEP ="{")
else
*0" after 100 ps when (INPUT ='0' and
GATEN = '1" and GATEP ='1")
OUTPUT = s0) and
GATEN ="'0"and GATEP ='1")
else
U after 100 ps when GATEN=Z or
GATEP =17
else
Z;
end BEH;

architecture STRUCT of FIFO_CELL is
component TRG
port
(INPUT : in newbit;
OUTPUT :inout newbit;
GATEP : in oldbit;
GATEN : in oldbit;
VSS 1 in oldbit := "0";
VDD: in oldbit := "1");
end component;

component INVY
port

o

else
w1 after 100 ps when (INPUT ="1" and
GATEN="1"and GATEP ="1")
else
w0 after 100 ps when (INPUT ='0' and
GATEN = '0' and GATEP = '0")
else
s1 aflter 100 ps when ((OUTPUT ="1" or
OUTPUT = wl) and
GATEN="'0"' and GATEP ='1")

else
s0 after 100 ps when ((OUTPUT ='0' or
OUTPUT =w0) and
GATEN ='0" and GATEP="1")
else

Z after 1 ns when ((OUTPUT =5l or

(INPUT : inout newbit;
OUTPUT : inout newbit;
VDD : in oldbit;

VSS : in oldbit);
end component;

signal SIG1, S1G2, SIG3, SIG4 : newbit;

begin

U1 : TRG port map (D1, SIG1, nshift_v1,
shift_v1, VSS, VDD);

U2 : TRG port map (D2, SIG1, nshift_v2,

shift_v2, VSS, VDD);

U3 : TRG port map (D3, SIG1, nshift_h, shift_h,
VSS, VDD);

U4 : TRG port map (SIG3, SIG1, nhold, hold,
VSS, VDD);

U5 : TRG port map (SIG2, SIG4, nhold, hold,
VS8, YDD);

U6 : INV port map (SIG1, SIG2, VDD, VS8);

U7 : INV port map (SIG2, SIG3, VDD, V88);

U8 : INV port map (S1G4, Q, VDD, VSS);

end STRUCT;

