Dynamic Reconfigurable System Using Modular Design and JBits

Zoltan Baruch
Computer Science Department
Technical University of Cluj-Napoca
26-28 Gh. Baritiu St., 400027 Cluj-Napoca
Romania
Zoltan Baruch@cs.utcluj.ro

Abstract — This paper describes the design of a dynamic re-
configurable system in an FPGA (Field Programmable Gate
Array) device. The system contains a reconfigurable part,
which can be configured as a convolution filter or a FIR (Fi-
nite Impulse Response) filter, and a fixed part, which is used
by both filters. The design method employed combines the use
of mainstream synthesis and implementation tools and the
JBits tool suite. Mainstream tools allow to design at a high
level, but they lack the support required for dynamic recon-
figuration. The JBits tool suite allows to generate and modily
configuration bitstreams for Xilinx Virtex FPGA devices. Its
ability to create partial configurations is combined with the
modular design flow in order to exploit the advantages of
both design methods.

I. INTRODUCTION

Reconfigurable computing is a computing paradigm that
has emerged in the last decade. This paradigm allows to
define the computing resources required by each applica-
tion and to configure these resources onto a programmable
logic device, usually a Field Programmable Gate Array
(FPGA). The reconfiguration of the target device is per-
formed under software control. In this way, applications
that are computationally demanding can be executed effi-
ciently by allocating more hardware resources [1]. Re-
search of FPGA-based reconfigurable systems has demon-
strated their efficiency over gemeral-purpose processors
and software solutions in several applications [2].

Many of the systems designated as reconfigurable can
only be statically configured [2]. When static reconfigura-
tion is used, the target device is completely configured
before system operation begins. If a new configuration is
required, it is necessary to stop system operation and to
reconfigure the device before operation can be resumed.

As opposed to static reconfiguration, dynamic recon-
figuration or run-time reconfiguration (RTR) allows to
modify only a part of the system while the rest of the sys-
tem continues to operate. Dynamic reconfiguration has
several important advantages. First, it allows custom syn-
thesized logic to be generated and configured at run-time,
which results in simpler and faster circuits [3]. Second, by
only partially reconfiguring the device, the amount of con-
figuration data required and the reconfiguration time can
be drastically reduced.

Although significant progress has been made in the field
of reconfigurable technology, this technology is not widely
used yet. The main reason is the lack of high-level design
tools that support partial reconfiguration. The various de-
sign solutions for partial reconfiguration cannot be com-
bined easily with the high-performance mainstream design
tools, and usually the design can only be performed at a
low level. An example is the Xilinx Java-based class li-
brary IBits [4], which allows to create configuration bit-

streams for Xilinx Virtex FPGA devices using structural
descriptions of the system. Currently, JBits does not offer
higher-level synthesis, optimization, or timing analysis
capabilities, which seriously restricts its use for designing
complex systems.

In this paper we illustrate a design method that combines
the ability of the JBits tool to create and manipulate partial
configuration bitstreams with the possibility of designing
at a high level using mainstream synthesis and implemen-
tation tools for FPGA devices. This design method is based
on the modular design adapted for partial reconfiguration.
We illustrate this method by designing a dynamic recon-
figurable system containing a reconfigurable part and a
fixed part. The reconfigurable part can be configured as
either a convolution filter which uses distributed arithme-
tic, or a Finite Impulse Response (FIR) filter, while the
fixed part is used by both filters.

This paper is organized as follows. Section II introduces
the reconfigurable computing paradigm. Section III details
the main design flows that can be used for reconfigurable
systems: the JBits tool suite, direct bitstream manipulation,
and modular design. Section IV discusses the implementa-
tion of a simple dynamic reconfigurable system to illus-
trate the proposed design method. Finally, Section V con-
cludes the paper.

I1. RECONFIGURABLE COMPUTING

Reconfigurable computing combines the flexibility of
general-purpose processors with the efficiency of custom
hardware, bridging the gap between the performance of
ASICs and microprocessors [5]. The effectiveness of re-
configurable computing has been shown in several areas,
such as video image processing, microprocessor emulation,
encryption/decryption, or digital signal processing. The
performance achieved by several reconfigurable architec-
tures is often with one or two orders of magnitude greater
than that of programmable processors [6].

The reconfigurable computing paradigm allows to im-
prove the performance of a computing machine by defin-
ing custom computing resources based on the specific ap-
plication required. Currently, these resources are usually
implemented in FPGA devices. An FPGA device is an
array of logical blocks whose function and interconnection
can be configured by the user. Most FPGA devices use
small look-up tables as programmable computational ele-
ments. These tables are wired together with programmable
interconnects.

Like processors, FPGA devices are “programmed” (con-
figured) after fabrication to solve a particular task. Tn tradi-
tional processors, operations are temporally composed by
sequencing them in time, using registers or memory to

437



store intermediate tesults. In contrast, in reconfigurable
devices tasks are implemented by spatially composing
primitive operators [7]. Because computations are per-
formed using spatial pipelines composed of a large number
of active computing elements, rather than sequentially re-
using a small number of computing elements, high per-
formance can be achieved.

Due to the limited configurable hardware available in a
device, there is a need to change the configuration of the
device upon demand and in real-time in order to perform
multiple functions using a minimal configuration. FPGA
devices require a relatively long reconfiguration time. To
achieve run-time reconfiguration, a very high reconfigura-
tion data rate is meeded if the configuration has to be
changed at a high frequency.

The attempts to reduce the reconfiguration data rates led
to different reconfigurable architectures, such as multiple-
context and partially reconfigurable [8]. A multiple-context
architecture stores multiple layers of configuration infor-
mation, referred to as contexts, Only one context is active
at a time, but a very fast context switch is possible. Each
layer of the configuration memory can be independently
written, so that the circuit defined by the active layer may
continue its operation. A partially reconfigurable architec-
ture allows a selective reconfiguration of the target device.
In a dynamic reconfigurable (or RTR) architecture, the
parts of the architecture which are not being configured
continue execution.

At this time, only a few FPGA vendors support partial
and dynamic reconfiguration. One of them, Xilinx, offers
the Virtex FPGA family. With this family, partial recon-
figuration is possible because internal configuration ele-

" ments of a device can be individually addressed [9]. An-
other vendor, Atmel, produces the FPSLIC (Field Pro-
grammable System Level Integrated Circuif) device, which
includes a general-purpose processor, memory, and pro-
grammable logic [10]. This Configurable System on a Chip
(CSoC) supports partial and dynamic reconfiguration
through context switching.

I11. DESIGN FLOWS FOR PARTIAL
RECONFIGURATION

Although there are several types of FPGA devices that
support partial reconfiguration, so far there is no integrated
design flow that allows to develop complex partially re-
configurable systems. Currently, designers can choose be-
tween the following basic design flows: bitstream genera-
tion and manipulation with the JBits tool suite, direct bit-
stream manipulation based on standard FPGA implementa-
tion tools, and modular design. These design flows are
introduced next.

A. The JBits SDK

The JBits System Development Kit (SDK) has its origin
in the Java Environment for Reconfigurable Computing
(JERC) developed at Xilinx, targeting the XC6200 family
of devices, now discontinued. This software environment
allowed logic and routing to be configured and macros to
be constructed at run time [11]. The XC6200 family al-
lowed run-time reconfiguration and featured an open archi-
tecture, with all circuit configuration data available to the

users. The next step was the development of SPODE cir-
cuit specification library, which allowed full access to all
configurable resources within the XC6200 series. The
SPODE library functions were called from a C program,
which generated a configuration file. Finally, JERC and
SPODE were combined to form JERCng (JERC next gen-
eration), a Java environment for the XC6200 series.

At Xilinx, the JERC project was transferred to the older
family XC4000 and renamed the Xilinx Bitstream Interface
(XBI) [12]. This environment was later renamed JBits,
Since the XC4000 family does not support partial recon-
figuration, any changes to the circuit configuration requires
to reload the entire configuration bitsiream. The slow re-
configuration time is unacceptable for most applications.
More recently, the JBits software has been ported to the
Xilinx Virtex family of devices, which has architectural
support for partial reconfiguration. However, the software
support for partial reconfiguration only arrived with the
addition of the JRTR API to the Virtex version of the JBits
tool suite. JRTR uses combined hardware and software
techniques which allow to make small changes to the de-
vice configuration data quickly and without interruption of
operation [13].

The main components of the JBits SDK are the JBits
Application Program Interface (API), the Run-Time Pa-
rameterizable Core (RTPCore) library, the JRoute API, the
Java Run-Time Reconfiguration (JRTR) API, the Xilinx
Hardware Interface (XHWIF), the BoardScope debugger,
and the VirtexDS simulator.

The JBits API is a set of Java classes which allow to
generate and modify configuration bitstreams for the Xil-
inx Virtex devices. This APT operates either on configura-
tion bitstreams generated by Xilinx synthesis tools, or on
bitstreams read back from the actual device [14]. Using the
JBits API, all configurable resources of the device can be
individually set under software control. Therefore, a dy-
namic and partial reconfiguration of the Xilinx Virtex de-
vices is possible from a Java application.

The JBits API provides access to all the resources of a
Virtex device, including the look-up tables (LUTs) inside
each Configurable Logic Block (CLB) and the routing re-
sources adjacent to the CLBs. The device architecture is
represented as a two-dimensional array of CLBs, and each
CLB is referenced by a row and column. This APT allows
to develop RTR systems in a high-level language.

There are four main functions in the JBits APL. The
read() and write() functions allow configuration bitstreams
to be read or written, The get() function allows to query the
state of a programmable logic resource, and the sef() func-
tion allows to set the state of a programmable logic re-
source to a specified value. The JBits API also contains a
series of constants which define each of the programmable
resources of the device and the values they can be set to.

Fig, 1 illustrates the JBits design flow. The user-written
Java application configures the FPGA device by communi-
cating with the board containing the device. The bitstream
input to the Java application can be a null bitstream or a
bitstream for an existing design. The application may use
the bit-level interface provided by the JBits API, which
allows to set or clear a single bit or a group of bits in the
bitstream. This is a low-level interface responsible for
knowing the bit location in the bitstream of a given con-
figuration data for the devices supported in the Virtex

438



FPGA family. The bit-level interface interacts with the
Bitstream class, which manages the device bitstream and
provides support for reading and writing bitstreams from
and to files. This class can also read back the existing con-
figuration data from the operating device, which is neces-
sary for dynamic reconfiguration.

The user application may also use the RTPCore library
provided by the JBits SDK. This library is a collection of
Java classes defining macrocells or cores that can be dy-
namically parameterized and relocated within a device.
Examples of cores are registers, counters, adders, multipli-
ers and other standard Xilinx Unified Library logic and
computation functions. In addition to these primitive cores,
other non-primitive RTP cores can be used, which are cre-
ated by instantiating primitive or non-primitive subcores
connected with nets and busses [14].

The JBits tool suite includes the JRoute API, which is an
automatic router with the ability to dynamically route and
unroute connections. However, currently the capabilities of
the automatic router are limited and it cannot manipulate
some routing resources, such as long lines.

The Java Run-Time Reconfiguration (JRTR) API allows
small changes to be made directly to the Virtex device.
Such changes can be done much faster than with usual
methods. The JRTR API keeps track of the changes done
in the configuration and only the necessary data is rewrit-
ten to the device [13].

The Xilinx Hardware Inferface (XHWIF) is a standard
interface for communicating with FPGA-based boards
[15]). It can also be used to communicate with the VirtexDS
device simulator. XHWIF contains methods for describing
the type and number of FPGA devices on the board, for
configuring the devices, for reading back the configuration
memory of the devices, for incrementing the on-board
clock, and for reading and writing from/to on-board memo-
ries, if they are available.

XHWIF provides a portable layer to connect JBits appli-
cations to reconfigurable hardware. By using this layer,
JBits applications can communicate with a variety of
boards. All the hardware specific information is hidden
inside of a class that implements the XHWIF interface.
Therefore, this interface enables applications to communi-
cate with boards connected through any bus or communi-
cation link. Using the Java Native Interface (JNI), which
allows Java programs to interface with C programs, calls to
the interface in the Java language are converted into calls
to the board’s drivers, usually written in C.

RTPCore

Library f<t— JBils API

Java Application

Y

Bilstream

L JRTR API

JRoute API }—=1

BoardScope
Debugger
XHWIF

N

Virtex VirtexDS
FPGA Device Device Simulator

Fig. 1. Design flow using the JBits SDK

The XHWIF interface is implemented as a server appli-
cation. This server allows other applications to communi-
cate with reconfigurable computing boards located any-
where across the Internet. This capability allows multiple
users to access a board and to debug designs using tools
such as BoardScope, without having direct access to the
hardware.

BoardScope 1s an interactive debug tool for Xilinx
FPGA-based hardware [15]. It features a graphical inter-
face for viewing the state of FPGA circuits during opera-
tion. The main display of BoardScope shows the complete
state of any CLB, including flip-flop configuration and
look-up table (LUT) values. The waveform display allows
to view signals and busses in a way similar to that used by
circuit simulators. BoardScope uses the XHWIF interface
to communicate with the FPGA-based hardware.

The Virtex Device Simulator (VirtexDS) is part of the
JBits tool suite and provides a software model of the entire
Virtex family of FPGA devices. The main advantage of
this simulator is that it includes support for RTR [16].
VirtexDS operates at the device level, simulating the actual
FPGA device, and therefore provides a high level of simu-
lation accuracy. It also allows to identify illegal configura-
tions that would damage the actual hardware, which is im-
portant for debugging RTR applications. The device simu-
lator interface is identical to that of the actual hardware,
which permits existing applications, including the Board-
Scope debug tool, to interface directly to the simulator with
no modifications.

The main disadvantage of the JBits tool suite is that, up
to now, it supports structural design only. Currently, it
does not provide support for state machine design, higher-
level -combinational and sequential synthesis, timing-
driven placement and advanced routing. Therefore, a pure
JBits design flow is only applicable for simpler or data-
flow oriented applications.

B. Direct Bitstream Manipulation

Standard design implementation tools, such as the Bit-
gen software of the Xilinx ISE design package, can gener-
ate full configuration bitstreams, as well as custom bit-
streams for small sections of the device. Switching the
configuration of a module from one implementation to
another can be performed rapidly, as the bitstream differ-
ences are small compared to the entire device bitstream.
With an appropriate software support, these bitstreams can
be loaded quickly into the device.

In [17], examples are given of how to make small
changes to a design using the FPGA Editor software in-
cluded in the Xilinx ISE package. Simple modifications,
such as changing LUT equations, changing block RAM
contents, or changing I/O standards, are relatively easy.
Also, there are other properties of slices, input/output
blocks (I0Bs), and block RAMs which can be changed by
dynamic reconfiguration. However, only those properties
or values can be changed that would not impact routing,
since otherwise there is a risk of internal contention. This
technique can be used, for example, to change the coeffi-
cients of a digital filter during run-time.

The main advantage of direct bitstream manipulation is
that it can modify full configuration bitstreams generated
by standard synthesis and implementation tools [18]. These

439



tools allow to design at a high level, using hardware de-
scription languages (HDLs), and can generate optimized
implementations of a design. However, the direct bitstream
manipulation design flow has important limitations. For
complex designs, the low-level manipulation of bitstreams
becomes very complex. In addition, the routing cannot be
changed, so that different reconfigurable parts must occupy
exactly the same area of the FPGA device, and the inter-
face between the reconfigurable parts and the fixed part
must be bound to a fixed location. Moreover, the designer
must ensure that the routes for the fixed part do not run
through the reconfigurable parts [18]. Because current im-
plementation tools do not allow to specify location con-
straints on routing resources, constraining the routing usu-
ally involves manual intervention.

Several tools are described in the literature for direct bit-
stream manipulation. James-Roxby et al. describe a tool
called JBitsDiff, which uses the JBits tool suite to extract
circuit information from existing cores [19]. These cores
can be created by any available design method. The user
defines the bounding box of the core with a floorplanning
tool, and JBitsDiff produces a JBits core as output. This
core can then be inserted into an existing configuration
bitstream.

Horta et al. describe in [20] the PARBIT tool, which is
also based on direct bitstream manipulation. This tool can
be used to transform and restructure bitstreams in order to
implement dynamically loadable hardware modules. The
PARBIT tool uses the original bitstream, a target bit-
stream, and parameters specified by the user. These pa-
rameters include the block coordinates of the logic imple-
mented on a source FPGA, the coordinates of the area for a
partially programmed target FPGA, and the programming
_options. PARBIT reads the configuration frames from the
original bitstream and copies to the partial bitstream only
the configuration bits related to the area defined by the
user. It can also reallocate the partial reconfigurable area
according to the new coordinates specified by the user.

In [21], Dyer et al. present a design tool flow that allows
to generate an initial full configuration and a number of
subsequent partial configurations. The routing between
static and reconfigurable parts is defined using a structure
called virtual socket. This is a component that provides
fixed locations for a set of predefined signals. It is manu-
ally placed and routed to guarantee correct connections
between cores.

C. Modular Design

The modular design flow has been defined by Xilinx
[17]. This design flow is based on the modular design
methodology supported by the latest versions of Xilinx ISE
package. The modular design flow represents a guideline
which should be followed in order to design, implement
and dynamically reconfigure portions of Virtex and Virtex-
11 series of FPGA devices. A series of restrictions are
placed on the reconfigurable modules. For example, the
height of such a module is always the full height of the
device. All logic resources included within the width of a
module, including all routing resources, are considered part
of the module’s bitstrear frame. Clocking logic is always
separate from the reconfigurable module, since clocks have
separate bitstream {rames. The implementation should en-

sure proper operation of the design during the reconfigura-
tion process, using explicit handshaking logic, for instance.
It is not possible to use the global set/reset logic available
in the Xilinx FPGA devices to independently initialize the
state of the reconfigurable module. Instead, user-defined
set/reset signals should be defined in the HDL code.

For reconfigurable modules that communicate with each
other, a special bus macro is provided by.Xilinx, which
grants a fixed bus communication between two adjacent
modules. BEach bus macro provides four bits of inter-
module communication. This macro is a pre-synthesized
bitstream, which uses fixed routing resources. These re-
sources will not change from compilation to compilation.
The communication is done using tri-state buffers. Each
time partial reconfiguration is performed, the bus macro
should be used to establish unchanging routing channels
between modules. Without this bus macro, signals could
not cross over a partial reconfiguration boundary, since it
would be impossible to guarantee fixed routing between
modules. Therefore, in the HDL code the designer should
ensure that any reconfigurable module signal that is used to
communicate with another module passes through a bus
macro.

Modular design allows to use standard design imple-
mentation tools, but it also has several limitations. Each
bus macro must be physically locked so that its center will
be placed on the boundary line between the two recon-
figurable modules, and it must be locked in exactly the
same position for all compilations. The placement of bus
macros can be specified by inserting location constraints in
the user constraints file. Another limitation is that currently
the bus macro signals cannot be bidirectional or recon-
figurable.

V. DESIGN OF AN Ei('AMPLE RECONFIGURABLE
SYSTEM

In this section we illustrate a design method that com-
bines the bitstream manipulation capabilities of the JBits
tool suite with the modular design flow. The advantage of
this combined design flow is that the system can be de-
signed at high level using mainstream synthesis and im-
plementation tools, while the bitstream manipulation capa-
bilities of JBits allow to simplify the design compared to
direct bitstream manipulation. We use this method to de-
sign a dynamic reconfigurable system containing a recon-
figurable part and a fix part. The reconfigurable part can be
configured as either a convolution filter which uses dis-
tributed arithmetic (DA) or a FIR filter. The fix part is used
by both filters.

The main steps of the design process are described next.

A. Designing the Individual Modules

The design consists of the following modules:

e The shift register module represents the fix part of the
system and it is designed using the JBits tool suite;

e The DA filter is the first reconfigurable module, de-
signed in VHDL;

e The FIR filter is the second reconfigurable module and
it is designed using the JBits tool suite.

440



The shift register is designed in Java as a core derived
from the RTPCore class. The constructor of the ShiftRegis-
ter class calculates the dimensions of the core and sets the
height and width of the core with the setHeight() and set-
Width() methods. The granularity of the core is at the CLB
level, and this granularity (Gran.CLB) is set with the
setHeightGran() and SetWidthGran() methods. The ports
of the core are created with the newinputPort() and Ne-
wOutputPort() methods. The hardware implementation of
the core is performed with the implement() method. This
method defines the signals and busses with the Netr()
method, connects the ports to signals with the PorfOb-
Jject.setintSig() method, and comnects the nets to busses
with the Bitstream.connect() method.

After designing the shift register core, the actual imple-
mentation of the shift register and the generation of its bit-
stream is performed with the TestShifiRegister class. The
main() method of this class parses the command line to
determine the name of the target device, the input bit-
stream file and the output bitstream file. Then this method
instantiates a JBits object based on the command line pa-
rameters, calls the »un() method and writes the configura-
tion into the output bitstream file. The run() method de-
fines the global parameters of the core, including the posi-
tion of the core in the device, creates the nets for the input
and output signals, creates the output bitstream file, instan-
tiates the system clock and the shift register core, sets the
position of the core, calls the implement() method for the
clock and the core, and connects the signals.

The DA filter uses distributed arithmetic in order to re-
place the multiply operations required for the convolution
with shift and add operations. Therefore, the hardware re-
sources required for the implementation are significantly
reduced. The basics of distributed arithmetic are described
in many publications, including [1]. The DA filter was
designed in VHDL. The inputs of the filter are the con-
stants tepresenting the filter taps, and the serial data
streams of eight bits each. The filter module contains a 2D-
shifter to which the input data are applied, a LUT to per-
form the multiply operations and an adder to sum the par-
tial products. After designing and implementing the DA
filter, the JBits tool was used to extract a partial configura-
tion bitstream from the full configuration bitstream gener-
ated by the synthesis and implementation tools.

The FIR filter was designed using the JBits tool suite.
The filter implements an algorithm which is similar to that
of a convolution filter. The tap values of the filter are com-
puted based on the filter type (high-pass or low-pass) and
the cutting frequency.

B. Creating the Floorplan

In this phase, we defined the location of the fix module
and of the reconfigurable modules, taking into account the
constraints specified in the modular design flow [17]. For
the floorplanning of the DA filter designed in VHDL, we
attached the area group properties that are specific to the
partial reconfiguration. These properties were specified in
the user constraints file (.ucf). For each bus macro, we en-
tered a separate location constraint into the .ucf file, be-
cause the current version of the floorplanner sofiware does
not allow to create these constraints. The .ucf file was used
during the implementation of the DA filter module. For the

other modules created with JBits, the location constraints
were specified in the Java code.

C. Implementing the Modules

Each module (fix and reconfigurable) has been imple-
mented separately, and bitstreams were generated for each
of them. For the modules designed with JBits, a null bit-
stream file has been used as input. For the DA filter de-
signed in VHDL, the full configuration bitstream file gen-
erated by the implementation tool has been used to gener-
ate a partial configuration file with JBits.

D. Assembling the Modules

In this phase, we combined the fix module with each of
the reconfigurable modules to create complete designs.
This was performed because the partial reconfiguration
design flow requires that the initial bitstream loaded into
the FPGA device be a complete design. First, we combined
the fixed module with the DA filter, preserving the place-
ment and routing achicved during the implementation
phase, and we created a full configuration bitstream. Then,
we combined the fix module with the FIR filter, creating a
second full configuration bitstream, These bitstreams have
been used in the next phase for functional verification.

E. Functional Verification

We used the BoardScope debugger and the VirtexDS
device simulator to verify the operation of both possible
combinations of modules: the fix module with the DA fil-
ter, and the fix module with the FIR filter. After loading an
initial full configuration bitstream, we tested the reconfigu-
ration of the filter by loading the partial configuration bit-
stream of the other filter. Both filters operated correctly.

V. CONCLUSIONS

The first contribution of this paper is the overview and
analysis of currently available design flows for reconfigur-
able systems: bitstream generation and manipulation with
the JBits tool suite, direct bitstream manipulation, and
modular design. The advantages and drawbacks of each
design flow were highlighted. The JBits tool suite allows
to create partial bitstreams for run-time reconfiguration,
but currently it supports structural design only. Direct bit-
stream manipulation allows to modify full configuration
bitstreams generated by standard synthesis and implemen-
tation tools, so that it is possible to design at a higher level.
However, for complex systems the low-level manipulation
of bitstreams becomes complex, and since the routing can-
not be changed, the designer has to ensure that the routing
between the fix part and the reconfigurable parts is correct.
Modular design allows to use standard design entry and
implementation tools, but it requires to use a special pre-
routed bus macro for communication between modules.
The designer has to specify location constraints for the
reconfigurable modules, as well as for the bus macros.

The second contribution of this paper is the demonstra-
tion of a design method that combines the ability of tha
JBits tool suite to create and manipulate partial configura-
tion bitstreams with the modular design flow. Therefore, it

441



is possible to design at a high level, using HDLs and main-
stream synthesis and implementation tools for FPGA de-
vices. We illustrated this method for the design of a simple
dynamic reconfigurable system containing a reconfigurable
part and a fix part. The reconfigurable part can be config-
ured as either a DA convolution filter or a FIR filter.
Reconfigurable architectures have several advantages,
combining the flexibility of general-purpose processors
with the efficiency of custom hardware. It is estimated that
without reconfigurability, many future products will not be
competitive. The main problem in this field is the lack of
high-level design tools that support partial reconfiguration.
A solution would be to combine the design methods which
are specific to dynamic and partial reconfiguration with the
high-performance mainstream design tools.

VI. REFERENCES

[1] Z. Baruch, “Run-Time Reconfigurable Implementation
of DSP Algorithms Using Distributed Arithmetic”, in
Proceedings of the 14" International Conference on
Control Systems and Computer Science (CSCS14),
2003, Bucuregti, Romania, pp. C1-Cé.

[2] D. Mesquita, F. Moraes, J. Palma, L. Méller, and N.
Calazans, “Remote and Partial Reconfiguration of
FPGAs: Tools and Trends”, in Proceedings of the In-
ternational Parallel and Distributed Processing Sym-
posium (IPDPS) CD-ROM, Reconfigurable Architec-
tures Workshop, 2003, Nice, France.

3] S. A. Guccione and D. Levi, “The Advantages of
Run-Time Reconfiguration”, in John Schewel, et. al,,
editors, Reconfigurable Technology: FPGAs for
Computing and Applications,. Proceedings of SPIE
3844, Bellingham, WA, 1999, pp. 87-92.

[4] S. A. Guccione, D. Levi, ‘and P. Sundararajan, “JBits:
A Java-Based Interface for Reconfigurable Comput-
ing”, in Richard Katz, editor, Second Annual Military
and Aerospace Applications of Programmable De-
vices and Technologies Conference (MAPLD), 1999.

[5] R. Hartenstein, “A Decade of Reconfigurable Com-
puting: a Visionary Retrospective”, in Design, Auto-
mation and Test in Europe, 2001, pp. 642-649.

[6] R.R. Vemur and R. E Harr, “Configurable Comput-
ing: Technology and Applications”, Computer, Vol.
33, No. 4, April 2000, pp. 39-40.

[71 A. DeHon, “The Density Advantage of Configurable
Computing”, Computer, Vol. 33, No. 4, April 2000,
pp. 41-49.

[8] M. Sima, S. Vassiliadis, S. Cotofana, J. van Eijndho-
ven, and K. Vissers, “A Taxonomy of Custom Com-
puting Machines”, in Proceedings of the First Work-
shop on Embedded Systems and Software
(PROGRESS 2000), Utrecht, The Netherlands, 2000,
STW Press, pp. 87-93.

[9] Xilinx Inc., “Virtex Series Configuration Architecture
User Guide”, Xilinx Application Note XAPP151,
2003, http://www.xilinx.com/xapp/xapp151.pdf.

[10] Atmel Corp., “Field Programmable System Level
Integrated Circuits (FPSLIC)”, 2002,
http://www.atmel.com/atmel/products/prod39.htm.

[117 E. Lechner and S. A. Guccione, “The Java Environ-
ment for Reconfigurable Computing”, in Proceedings
of the 7" International Workshop on Field-
Programmable Logic and Applications (FPL 1997),
1997, Springer-Verlag, pp. 284-293.

[12] S. A. Guccione and D. Levi, “XBI: A Java-Based
Interface to FPGA Hardware”, in John Schewel, edi-
tor, Configurable Computing: Technology and Appli-
cations, Proceedings of SPIE 3526, Bellingham, WA,
1998, pp. 97-102.

[13] S. McMillan and S. A. Guecione, “Partial Run-Time
Reconfiguration Using JRTR”, in R. W. Hartenstein
and H. Grunbacher, editors, Field-Programmable
Logic and Applications, Springer-Verlag, Berlin,
2000, pp. 352-360.

[14] Xilinx Ine., “JBits Tutorial”, JBits SDK Version 2.8,
2001.

[15] D. Levi and S. A. Guccione, “BoardScope: A Debug
Tool for Reconfigurable Systems”, in John Schewel,
editor, Configurable Computing: Technology and Ap-
plications, Proceedings of SPIE 3526, Bellingham,
WA, 1998, pp. 239-246.

[16] S. P. McMillan, B. J. Blodget, and S. A. Guccione,
“VirtexDS: A Device Simulator for Virtex”, in John
Schewel, et. al., editors, Reconfigurable Technology:
FPGAs for Computing and Applications II, Proceed-
ings of SPIE 4212, Bellingham, W.A; 2000, pp. 50-56.

[17] D. Lim and M. Peattle, “Two Flows for Partial Re-
configuration: Module Based or Small Bit Manipula-
tions”, Xilinx Application Note XAPP290 (v1.0),
2002, http://www.xilinx.com/xapp/xapp290.pdf.

[18] M. Dyer, C. Plessl, and M. Platzner, “Partially Recon-
figurable Cores for Xilinx Virtex”, in M. Glesner, P.
Zipf, and M. Renovell, editors, Field-Programmable
Logic and Applications (FPL 2002), Montpellier,
France, 2002, pp. 292-301.

[19] P. James-Roxby and S. A. Guccione, “Automated
Extraction of Run-Time Parameterisable Cores from
Programmable Device Configuration”, in Proceedings
of 8" IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM 2000), Napa, CA,
2000, pp. 153-161.

[20] E. L. Horta, J. W. Lockwood, and S. T. Kofuji, “Us-
ing PARBIT to Implement Partial Run-Time Recon-
figurable Systems”, in M. Glesner, P. Zipf, and M.
Renovell, editors, Field-Programmable Logic and
Applications (FPL 2002), Montpellier, France, 2002,
pp- 182-191.

[21]M Dyer, C. Plessl, M. Platzner, “Partially Recon-
figurable Cores for Xilinx Virtex”, in M. Glesner, P.
Zipf, and M. Renovell, editors, Fi ield-Programmable
Logic and Applications (FPL 2002), Montpellier,
France, 2002, pp. 292-301.

442



