FPGA-Based Edge Detection with Subpixel
Accuracy

Prof. Dr. Eng. Sergiu Nedevschi
Technical University of Cluj-Napoca
Department of Computer Science
Baritiu 28, RO-400391 Cluj-Napoca, Romania
Sergiu.Nedevschi@cs, utcluj.ro

Abstract— Edge detection is ubiquitous in image
processing. Methods that provide high quality results
are available, but are computationally expensive. A
solution using FPGA technology for such a method
having subpixel accuracy is presented. The method
requires computing the gradient, the second directional
derivative along the direction of the gradient and the
histogram of the gradient. An efficient pipeline design
that performs this task is proposed. The performance
of the implemented solution on a VirtexE600 FPGA
device is analyzed and compared with that of today’s
personal computers.

I. INTRODUCTION

Entailed by most image processing applications, edge
detection techniques have represented an active field of
research since the beginnings of image processing. Several
such techniques exist, each having different characteristics
(accuracy, noise sensitivity, processing cost, etc.). In most
applications, edge detection is performed in the early
stages of processing and all the operations that follow are
entirely dependant of the quality of the results provided
by this stage. It is thus essential to choose an édge de-
tection technique that has good functional characteristics
{like noise sensitivity and accuracy). Unfortunately, there
is a tradeoff between the functional and non-functional
characteristics of an edge detector (like processing speed
and memory requirements). Especially in the case of real-
time applications, meeting the nonfunctional requirements
becomes a critical issue.

In this work, an edge detection technique having sub-
pixel accuracy is considered. This technique provides high
quality edges but also implies high processing costs. The
alternative of a hardware solution using FPGA technology
is presented, in order to reduce the processing time and
make the technique usable for real-time applications.

II. THE EDGE DETECTION ALGORITHM

The method ([1],{2],[3]) implies two stages. The first
stage requires computing the second directional derivative
along the direction of the gradient. This is, according to [4],
the 2D equivalent of the derivative of the one-dimensional
Gaussian.

Stefan Mathe
Technical University of Cluj-Napoca
Baritiu 28, RO-400391 Cluj-Napoca, Romania
mathestefan@freemail.utcluj.ro

Let us denote by G(z,y) the Gaussian kernel, given by:

22442
2ot = g(z)g(y) (1
Let I be the image under consideration and n be

the direction of the gradient (* denotes the convolution

operator): i

Gz,y) =e

_V(G=1I)
DY @)

The first derivative along the direction of the gradient,
Gy is given by the formula:

oG
G _ — = .
n=go=n VG (3)
The second derivative along the direction of the gradient

is thus computed as:

%1 (AIy2 B 8l 8% | 91 (8Iy2

'—aiG*IwW(é-‘E +2‘E£‘3_y‘3way+8_y5'(ﬁ)
2 - o1 4
on ; (ﬁ)2+(?93)2

(4)

There are several solutions that can be used to compute
the derivative terms that appear in equation (4). Some
of the operators mentioned in the literature are Roberts,
Sobel and Prewitt. Due to its low noise sensitivity, the
Sobel operator has been preferred for our application. It
consists of the following 3x3 convolution kernels, one for
the x and the other for the y axis:

iy 0 &
33:%- ~2 0: B (5)
N -1 01

—1 =2 4
aﬁ=é. o 0 o) (6)
y 1 2 1

Having computed the second directional derivative, pro-
cess of edge extraction at subpixel accuracy can start.
This second stage of the edge detection process will not
be presented in detail in this work, since it is beyond its
scope.

The process consists of two inter-related processes:

« A scanning process over the entire image that iden-

tifies the starting points for contour following and
extraction :

447



« A contour tracing process, which is triggered by the
scanning process each time a valid contour starting
point is found. At startup, this process receives the
coordinates of the starting point and start tracing
the contour and extracting the edge until the edge
is closed or falls below a given gradient intensity
threshold.

The contour tracing process uses the gradient and the
second directional derivative to reconstruct the edges.
Both processes also require a gradient intensity threshold
parameter to discriminate the useful edges from noise. In
practice, instead of using a fixed value for this parameter,
an adaptive thresholding technique is preferred. In this
approach, a histogram of the magnitude of the gradient
is used to choose the threshold such that there is a fixed
number of pixel having gradient intensities less than this
threshold. This method provides good results even when
the contrast of the original image was not previously
known.

The rest of this paper will focus on accelerating the first
stage of the process using FPGA Technology.

ITI. Using FPGA TECHNOLOGY FOR ACCELERATION

As it can be seen in the previous section, the edge extrac-
tion process requires the following pieces of information in
order to produce the list of edges:

e The gradient of the image (along the X and Y axes)

« The second directional derivative along the direction

of the gradient

« The histogram of the magnitude of the gradient

A solution that computes all this information using FPGA
resources is presented in the following sections.

A. Gradient Computation

The derivatives along the X and Y axes are computed
using the Sobel kernel. This implies perfoming a convolu-
tion between the original image and the 3x3 kernels shown
in equations (5) and (6). For this, a 3x3 pixel neighborhood
of the current pixel has to be obtained. Issuing 9 read
operations for each pixel would imply a large time penalty.
Instead, a pipeline approach is used.

Assume that the input image has a horizontal resolution
of hres pixels. In this case, let ¢ be the phase (ordinal
number) of the current pixel. Then, the neighbourhood is
given by the following phase matrix:

¢—hres—1 & —hres ¢ —hres+1

$p—1 @ d+1
¢+hres—1 ¢+ hres ¢+ hres-+1

(7)

As it can seen, the phase spans over a 2- hres+3 length
interval, and thus this would be the length required by a
pipeline implementing this kernel (see Figure 1). Each of
the FIFO memories in this figure has a capacity of hres—3,
which, in the case of a 1024 horizontal resolution, means
a pipeline of 1021 registers for just one line. The cost
is obviously too high, thus an implementation based on

L3
A2 A2z A21
s 00
SHIFT MEMORY brthtes) a o a s o = o
Piex [ Cux [>~CLe [~ CLK
BE A2 At
Lo SHIFT MEMORY brtjires) a b o [P b cﬁ;n 049
2 bk b ek bk
Fig. 1. Generating a 3x3 pixel neighbourhood
. ADOR, ABDR |
[ — of, oo, b
w, ’;{:‘_“- EN,
MEMBY
ciK, CLK, <]
o
CLK
=1
L o
cu = —{cy
> Gl $> CLK
WODR CRTER RADDR_CHTER
<tebulas0 il las<d_pt_ouy_belogikl
Fig. 2. A shift memory of a given depth using a dual-port memory

dual-port memory modules is needed. Such an implemen-
tation is presented in Figure 2. The initial values of the
address counters are computed in such a way that their
phase difference is always equal to the length of the shift
memory. The two counters can be viewed as two pointers
moving around in a circular fashion, progressing one step
at each write enable signal, After the neighborhood has
been obtained, the application of the Sobel kernel is a
straightforward, The particular nature of this kernel allows
for a much cheaper implementation than using a generic
convolution engine (for such an engine, please consult [5]).
Tirst of all, it involves only multiplication by 2 and division
by & which can be performed using shifting operations.
Also, 3 of the coefficients are null, thus resulting in a waste
of resources in the case of a generic convolution approach.
The computation will be achieved using 4 stages, as it can
be seen in figure 3.

B. Second Directional Derivative Computation

Assume that all the first and sccond order deriva-
tive terms have been already computed using the Sobel

448



r i

BEsAT
=

AESAT

Fig. 3. Pipeline implementation of the convolution with Sobel kernel

derivative kernel presented before. Let us denote them
by dx,dy, dxx,dxy and dyy. In order to compute the
fraction appearing in equation (4), one has to perform 6
multiplications and 1 final division, as it is outlined by
algorithm 1:

Stage 1;

A — dx - dx;
B« dy - dy;
C + dzx - dy;

Stage 2;

D — A -dcx;
E— B -dyy;
P C - doy;
Stage 3;

M «— D+ E;
N —F<<l;
Q— A+ B,

Stage 4;
P~ M+ N;
Stage 5;
R g;

Algorithm 1: Second order directional derivative com-
putation ' 5

Unfortunately, multiplication and division methods for
signed integers, that is, represented in two’s complement,
are not well suited for pipeline implementation and are
generally expensive. The multiplier and divider that are
used in this work are unsigned, and thus take as input only
the magnitude of the arguments (signs are dealt with sep-
arately). This involves certain conversions between two’s
complement and sign-and-magnitude, resulting in the in-
sertion of 4 intermediary stages. The resulting pipeline for

Fig. 4.
derivative

The pipeline for computing the second order directional

Fig. 5.

Pipeline divider for a 4-bit quotient

second directional derivative computation is presented in
figure 4. The multiplication modules used in this design
contain binary trees of adders with output registers that
add up the partial products. The multiplication compo-
nent is configured by two generics, width_a and width b
giving the size of the two operands. The total time for
performing a multiplication is log, width_b clock cycles.

Implementation issue. As it can be seen, the struc-
ture and size of the tree are dependent on the width of the
second operand (given by width_ b). In order to generate
such a tree, the GENERATE capability of VHDL has been
extensively used. The tree has been represented as a vector
of values, the parents of node ¢ being stored at locations
2.7 and 2-i+ 1. The resulting code is synthesizeable with
the latest version of XST (Xilinx Synthesis Tool, see [6]).

For division, the array divider proposed in [7] has been
used. It is based on repeated subtraction of the divider
B from the dividend A. If, at a subtraction, the result
is negative, rather than being restored by addition, it is
multiplexed with the original value. Figure 5 presents such
a divider for a 4-bit quotient.

C. Computing the Magnitude of the Gradient
The only item that remains to be computed is the

histogram of the magnitude of the gradient, i.e, the ex-
. / 2 2 . .
pression V(f’”) + (%) . As it can be noticed from

EE

449



2
figure 4, in stage 6, the expression (%)2 -+ (g_;y has
already been computed (it has been output onto the pin
GRADIENT_SQRT). It follows that all that has to be
done is to take the square root of this value in order to
obtain the final result.

Unfortunately, the expression under the square root has
a magnitude of 2. 1282 = 32, 768, thus requiring 15 bits o
represent, Extracting the square root of such a big number
cannot be achieved by a simple LUT. Such a LUT would
have 32Kbytes and could not be accommodated by the
resources found in a VirtexE device.

Fortunately, there are other solutions to extracting the
square root of a number. One of them, using Newton’s
method, is based on an approach similar to that of the
divider, but a pipeline implementation would still be very
costly due to the large number of stages. Another method
for computing the square root has been used, one that
is based on LUTs, but uses some tricks to drastically
minimize the LUT space needed.

First, it should be noted that it is the integer part of
the square root that has to be computed (more exactly,
the largest integer smaller that the square root). Let us
take the derivative of the square root function:

' 1
) = 8
One can sce that the derivative of the square root

function is a uniformly decreasing function, approaching
0 as z grows to infinity:

1
li =0 9
by (®)
Let us consider z = 256. By replacing into equation 8,
one gets:

(V) (256) = 5

And since the derivative of the square root is a decreas-
ing function, we can extend this to:
1
< —, ¥z > 256

(Ve)' < 55 (1)

But since it is the integer part of the square root we
are interested in, it is obvious that, as the slope of this
curve decreases, more and more values are mapped onto
the same output value. In fact, the condition /T < %
guarantees that for any interval [a,a+ k& — 1], there will be
at most one "step” in the integer part of the function (since
the function can only increase with 1 in this interval). In
particular, it is known that that:

Ya > 256,Vr € [a,a + 31],vT — va < 1,

Let us now divide the interval [256,8192] into smaller
intervals of length 32, starting from 256 onwards. Consider
that we have a precomputed LUT that maps each value
[33] to [v/z]. Then, by taking a = 32- | 5| and observing
that = € [a,a + 32], it follows from equation 12 that the
maximum error of the result is 1.

(10)

(12)

It has already been stated that there is al most onc
“step” in any 22-length interval for all « > 256. Consider
that one also has a precomputed LUT that memorizes the
displacement of this value (that is, it stores the smallest
value of the expression © mod 32 for which the error in
the result becomes 1). In this case, a correction would be
possible by incrementing the value of the result and finally,
we would end up with the exact value of the square root.

A similar approach can be taken for x greater than 8192.
The final algorithm is presented below:

if r < 256 then
r— LUTV)(z);

else

if = < 8192 then

7 — LUTVy(z/32);

if = mod 32 > LUTC5{z/32) then

I x—x+1;

end

else

7 LUTV;(x/128);

if z mod 128 > LUTC3(z/128) then
Te—x+1;

end
end
end

Algorithm 2: The square root extraction algorithm

LUTV:, LUTV, and LUT'V; represent the value lookup
tables, cach mapping x,| &5 | and | 13 | respectively to their
square toot values. LUTCh and LUT'Cy are the correction
look-up tables, each mapping the values of || and |13z
to their error correction offset (see figure 6 for a graphical
representation). These tables are generated by software
using the following formulas:

LUTVy[z} = | V32 - x| (13)
LUTColz] = (LUTValz] +1)% - 322 (14)
LUTV3[z] = V128 - x| (15)
LUTC;lz] = (LUTVa[z] + 1)® - 128 - (16)

The if statements in the presented algorithm can be
processed in parallel, resulting in a 3-clock pipeline for
calculating the square root. The design is presented in
Figure 7.

D. Histogram Computation

Histogram computation involves three major steps, for
each pixel p arriving at the input:

1) cnt « hist[p]

2) ent—ent+1

3) hist[p] « ent

450




‘PSqrr(x)

| |
|| LUTC[x/32] :

== 1] : ]
1 : l
I . |
{ ; |
| : I
I 3 |
15 : 1
LI
= . i
I : l
{ 3 I
| : 1
| : i
I : f
1 : i b

0 [%/32] x [%/32]+1 X
Fig. 6. A graphical representation of LUTC and LUTV.

[

LA a
LTyt

e

aora g
LuTc2

> eor

qy)

AcSR
LUTVZ

po

ADDR @
LUTC3
[ e

L= <

ApoR o
LUtV

> ean

g

>t

Fig. 7. Square Root Computation Pipeline

Since the rest of the design has a 1 clock cycle/pixel
performance, a pipeline approach must be undertaken for
implementing this module as well. This leads to a read
and a write operation in each clock cycle, requiring a
dual-port memory lor storing the histogram. Two read
after write (RAW) conflicts can appear in the pipeline,
for the pixel patterns [x x] and [x ¥ x]. The first conflict
is handled using a forwarding technique and the second
using bypassing. Conflict detection is performed by the
two comparators (see figure 8).

Wiite Port

The histogram computation pipeline

Fig. 9.

Datapath needed to control the arithmetic pipeline

E. Top-Level Design

Using the components that have been designed in the
previous sections, the overall structure of the design has
been presented in figure 9. Several delay elements are
required to assure that all data is present at, the right place
at the right time. A control unit (not shown in the figure)
is also present in order to assure proper loading/fAushing
of the pipeline.

IV. EXPERIMENTAL RESULTS

The design that has been presented above has been
implemented and tested on a VirtexE600 device ([8]).
The observed performance at an 80Mhz frequency is
3.2ms/frame. Unfortunately, due to the high communica-
tion needs, this computational speed remains unused, since
the PCI interface imposed an 80Mb/s communication
bottleneck. A Pentium 4 computer operating at 2.66Ghz
requires 20ms/frame to perform the same computation.
It should also be noted that the Virtex device that has

451



been used has been produced in the year 1999, and FPGA
technology has significantly evolved since then.

V. CONCLUSIONS AND FUTURE WORK

A hardware solution that accelerates the edge detection
process using a subpixel level method has been presented.
Even though the performance of the design is much higher
than than that of a general purpose computer, the high
amount of data that must be transferred to the soft-
ware environment for the second stage of edge detection
drastically limits the framerate of the system. It is thus
desirable to investigate a method to move the second part
of processing into the hardware design, such that this
transfer penalty is no longer incurred. This will be the
subject of future research.

REFERENCES

/1] A. Huertas and G. Medioni, “Detection of intensity changes
with subpixel accuracy using laplacian-gaussian masks,” in JEEE
Transactions on Pattern Analysis and Machine Intelligence,
1986,

[2] P. Grattoni and A. Guiducci, “Contour coding for image deserip-
tion,” Paitern Recognitron Letters, vol. 11, no. 2, pp. 95-105,
1990.

[3] V. Torre and T. A. Poggio, “On edge detection, ieee transactions
on pattern analysis and machine intelligence,” vol. 8, no. 2, pp.
147-163, 1986.

[4] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Anclysis and Machine Intelligence,
vol. 8, no. 6, pp. 679-698, 1986.

[3] S. Nedevschi, P. Samways, M. Marian, and T. Hall, “Real-time,
single-chip, generalized convolution device for image processing,”
A.CLA.M. Sci. Journal, vol. 5, no. 1, pp. 11-22, 1996.

[68] Xilinz ISE 6 Software Manuals, Xilinx Inc., 2003.

[7] B. Z. Francisc, Structure of Computer Systems. U.T. Pres Cluj-
Napoca, 2002,

[8] Virtez-E 1.8 VField Programmable Gate Arrays, Product Speci-
ficatron, Xilinx Inc., 2001.

452



