A General Smith-Waterman Algorithm Implementation
Using the CREC Reconfigurable Computer

Balint Szente Octavian Cret Zsolt Mathe Cristian Vancea Florin Rusu
Department of Computer Science Computer Science Computer Science Computer Science
Automation Department Department Department Department
Pﬁsﬁi\f;i;r Technical University = Technical University ~ Technical University ~ Technical University

of Targu-Mures e Chy=Napoca

of Cluj-Napoca

of Cluj-Napoca of Cluj-Napoca

Nicolae [orga 1, Gheorghe Baritiu 26, Gheorghe Baritiu 26, Gheorghe Baritiu 26, Gheorghe Baritiu 26,
Targu-Mures, RO-540088 Cluj-Napoca, RO-400027 Cluj-Napoca, RO-400027 Cluj-Napoca, RO-400027 Chyy-Napoca, RO-400027
Romania Romania Romania Romania Romania

bszente(@rdsiink.ro cret@es.utclyj.ro mazsoli@fastmail fin veristianl4@yahoo.com usur_nirolfi@dyahoo.com

Abstract — The Smith-Waterman is one of the fundamental
algorithms in the field of Bioinformatics. Several hardware
implementations of this algorithm were reported, but only for
some very particular cases of it. This paper prescnts a general
case implementation of this algorithm using the CREC low-
cost, General-Purpose Reconfigurable Computer. The main
idea of the CREC system is to generate the best-suited
hardware architecture for each software application through
a Hardware/Software CoDesign process during which the aim
is to exploit the high intrinsic parallelism of the application.
The hardware architecture is described in VHDL code that is
automatically generated by a program, written in ANSI C.
Finally, CREC system is implemented in a FPGA device. The
overall hardware architecture, the software code and the
performance estimation formulas are presented and used to
demonstrate the system’s efficiency, which is close to the
dedicated systolic implementations. The obtained results
prove the efficiency of this CREC-based implementation and
the significant gain of speed over a PC-based implementation.

L INTRODUCTION

The Smith-Waterman (SW) algorithm [1] is a very
widely used algorithm in Bioinformatics. It represents an
optimal method for sequence alignment and homology
searches in genetic databases and makes all pair wise
comparisons between the two strings. It achieves high
sensitivity as all the matched and near-matched pairs are
detected. In this field, the most commonly used algorithms
are FASTA and BLASTA [2]. These are fast algorithms
that prune the search involved in a sequence alignment
using heuristic methods, but the level of errors yielded by
these algorithms is about two times higher than the one
provided by the SW algorithm [2].

However, the computation time required strongly limits
the use of the SW algorithm. This is why, several hardware
(ASIC and FPGA-based) implementations of this
algorithm were proposed, but these implementations
handle only a particular case of the algorithm, where the
three parameters are assumed to have the following values:
ins = del = 1, sub = 2 (see Section 2 for details), and there
are only four characters in the alphabet (corresponding to
the four nucleotides in the DNA: 4, C, Gand T) — as it is
typical for many applications. For this particular case,
Lipton and Lopresti [3] made an observation that
considerably reduced the complexity of the algorithm, thus
allowing high-performance implementations.

The goal of this paper is to present an application of the
CREC General-Purpose Reconfigurable Computer
consisting in the implementation of a general case of the
SW algorithm, which seems to become a common need.
The three parameters ins, de/ and sub can take any value
between 0 and 15, and there are 32 characters in the
alphabet. Here, the main limitation is given by the capacity
of the FPGA chip. The physical support of the
implementation was chosen to be a Xilinx Virtex FPGA
device. Because of the generality of the considered case,
the architecture occupies significantly more space in the
FPGA chip than in the previous implementations. Starting
from a systolic cell proposed by Yu et. al. [4], an original
solution that lifts up the scalability issues is presented.

The main idea of the CREC design is to build a low-cost
GPRC able to exploit the intrinsic parallelism present in
many low-level applications by generating the best-suited
hardware for implementing a specific application. The
CREC design was introduced for the first time in [5]; the
main novelty introduced by CREC comsists of the
combination, in a very effective way, of several design
styles and architectural concepts. The result is a new
computational model based on reconfigurable architecture
concepts and whose main features are: Instruction Level
Parallelism, parallel RISC style architecture, dynamically
generated fully scalable architecture. The resulis presented
in this paper prove the applicability of the CREC system
for specialized computing intensive applications,
approaching the performances obtained by dedicated
systolic solutions, even if it is a general-purpose computer
System.

II. SMITH-WATERMAN ALGORITHM

Pattern-matching problems appear in many different
disciplines. Algorithms designed to solve the pattern-
matching problem have evolved over time. This section
discusses the Smith-Waterman algorithm (SW).

Smith and Waterman devised an algorithm for matching
similar patterns. This algorithm compares a pattern S to a
text T and calculates the penalty required to change S into
T. Due to the fact that § and T do not match exactly, the
penalty will take into account the number of insertions,
deletions, and substitutions needed to convert the strings to
match each other. This penalty is referred to as the edit
distance.

453

The SW algorithm solves the matching problem using a
dynamic programming approach. The algorithm uses the
solutions from smaller problems to create the larger
solution and in the process, creates a matrix of edit
distances. If A is the SW matrix, the value in cell Hj;
represents the degree of similarity between the sequences
up to 7; and ;. Lipton and Lopresti [3] presented a
simplification of the SW algorithm. In the modified SW
algorithm, each element of the matrix uses three other
elements to compute its value:

S S

a, if T, =5; 0 1 ..j-1j
A {a+sub, it S, T 1
b+ ins :

c + del i1 a b

Tl i Yoo d

Fig. 1. The SW formula and the internal table

If S and T have the lengths m and # respectively, then
the time complexity of a serial implementation of the
Smith-Waterman algorithm is O(mxn).

In a parallel implementation, the positive slope diagonal
entries of Fig. 2 can be computed simultaneously. The final
edit distance between the two strings appears in the bottom
right table entry. Data dependencies mean that entries d in
the table can only be calculated if the corresponding a, b
and ¢ values are already known and so the computation of
the table spreads out.

pe1 pe: pe:
S| S| S pe . pe: pes pe
I-+—>... _
T T i PEs
T T T
_ n T T
I;L tim
me

Fig. 2. Data dependencies in the SW table and
the systolic operating mode

This systolic approach was used for implementing the
SW algorithm wusing the CREC general-purpose
reconfigurable computing system.

I1I. THE CREC DESIGN FLOW

CREC is the final product of a Hardware/Software
CoDesign process, where the hardware part is dynamically
and automatically generated during compilation. The
resulting architecture is optimal because it exploits the
intrinsic application parallelism. The steps in the
application development are (Fig. 3):

1. The application’s source code is written in CREC
assembly language.

2. The source code is compiled using a parallel compiler,
which allows the implementation of ILP (instruction-
level parallelism). The compiler detects and analyses
data dependencies, then it determines which instructions
can be executed In parallel. A collection of instructions

that can be executed in parallel constitutes a program
slice. Thus, the whole program is divided into slices.

3. According to the slice’s size, the hardware structure will
be generated. The generic architecture already exists in a
VHDL source file, so at this moment it is only adjusted.
It will be materialized in an FPGA device.

4. The VHDI. file is compiled and the FPGA device is
configured.

Integrated CREC Development Sysiem

Parallel Compiler

S‘tflgi]:agl:;e (determination of VHDL
¢ ¢ the number of LI Source Code
(wnKe?clrr;lfllR_EC slices and | Gen_era!gr
L S Y instructions (writlen in
anguage) scheduling) ANSIC)

Application FPGA VHDL File
Execution Configuration Compilation

Process

Fig. 3. The CREC Design Flow

IV. THE CREC LOW-LEVEL PARALLEL COMPILER

What particularizes the CREC compiler is the role of the
last stage, code generation. Besides assigning the
instructions to EUs, the Low-Level Parallel Compiler also
determines the sets of instructions that can be executed in
parallel, according to the hardware architecture. The
algorithm that realizes this feature using the infrinsic
parallelism of instructions has a linear execution time,
proportional to the number of program’s instructions,

ON).

The compiler’s task is to divide a CREC assembly
language program written in a sequential manner into
pieces to be exccuted in parallel. The compiler generates a
file in a specific format that describes the tailored CREC
architecture using the expanded form of program’s
instructions resulted from the previous phase. This file will
include the size of the various functional parts, the subset
of instructions involved, the number of EUs, etc., together
with the sequence of instructions that makes up the
program.

Another aspect that makes CREC particular with respect
to classic processors, besides its reconfigurable nature, is
the parallel nature of the computations: each EU has its
own accumulator register. Thus, at each moment during
execution, there are N distinct EUs, each one executing the
instruction that was assigned to it by the compiler, taking
into account its nature and the rules associated with
instruction scheduling. Some instructions specify the
precise EU to execute them, while other instructions can be
executed by any EU. For instance, “MOV R1,7” will be
executed by EUl, since it works with the register R1,
while “JMP 3” has no specific EU associated and will be
assigned one by the compiler, depending on the
availability.

The accunmulator register of all the EUs have equal
capacities, but the internal structure of each EU will be

454

different, according to the subset of instructions (from the
CREC Instruction Set) that the EU will actually execute.

The scheduling algorithm groups instructions so that
they can be executed in parallel. A group of instructions
that are executed at the same time is called a slice.

V. CREC HARDWARE ARCHITECTURE

The hardware structure is described using VHDL code,
which is generated and optimized by a package of
programs. The optimization is done by the VIIDL Source
Code Generator and consists of eliminating each
unnecessary element, signal or bus.

The architecture’s main components are; the N EUs; the
N local configuration memories for the N EUs (in DPGA
style), called Instructions Memories; a Data Stack
Memory, used in instructions like PUSH or POP; a Slice
Stack Memory, used to store the current slice address
(CALL, RETURN); a Slice Program Counter; an
associative memory that maps instructions to the slices that
must be executed by each EU, called Slice Memory; a
Store Byffer and a Load Bujffer (temporary data buffers for
the Data Memory); a Data Memory; Operand Memories,
which contain the direct operands for the EUs.

¥ — v —v
Address Address Address “Address
INSTRUCTION QPERAND TNSTRUCTION OPERAND
MEMORY 1 MEMORY [MEMORY & MEMORY &
Daza Ot Daws Out Data Ot Data Ut
1]
[4
Daz Ocz 1) 4 4 Y3
SLICE Imirection Address Reg bmediate Insuction Adéress Reg lmmedme Daza Ot
P Code Lines Jnput Operand Lines Input Opernd | o oog
MEMORY
EUL -1 BUN LOAD
Address e
Conwol Reg Opeoand Comzol Reg Opaand BUFFER
Sugnals Valie Bos Signaks Vale Bus il
}[‘ ‘ [y
Dau Ot 2 = =
SLICE '—q
COUNTER A
Lood fed Danln Dan I Dauln Data Out
I la Push Push Load DATA
* ELICE DATA STORE MEMORY
- STACK STACK BUFFER bei Load
Pop Pop [+ Daa Ont Daa ln
Data Myt Duata Out f

Fig. 4. The general CREC architecture

The linkage between the basic hardware elements is
shown on Fig. 4. The links between EUs are point-to-point,
but the Data Memory, the Slice Counter and the Slice
Stack Memory are accessed via Address, Data and Control
busses. The Direct Operands Memory can be accessed only
by its corresponding EU.

The Slice Memory is an associative memory that stores
the general slice word, which contains the pointers in the
each Instruction Memory and operand Memory. According
to the number of instructions that each EU performs in the
current application, the widths of these two fields are
variable and different for each EU. This way, the word
width is variable with each application and will always be
kept to a minimum. This memory is implemented in the
Virtex BlockRAM:s.

The Instructions Memory and the Direct Operands
Memory are distributed memory blocks, implemented in
the Virtex Look-up Tables configured as ROMSs. Their size
depends on the number of instructions and on the number

of direct operands that each EU works with during the
application execution.

The general Data Stack Memory is implemented as
RAM. Its size is variable and will be estimated according
to the number of PUSH / POP instructions present in the
application source code. The Slice Stack Memory is used
by the general instructions CALL and RETURN. Here is
stored the slice number for a procedure call and the retum
slice address from a procedure call.

The Data Memory is normally implemented outside the
FPGA chip, but for simulation purposes we created this
block inside the Virtex chip. This memory contains the
usual data used in the application.

V1. CREC INSTRUCTION SET

Each instruction is encoded on the same number of bits,
like in RISC architectures. Although CREC is a RISC
processor, its EU has a relatively large mstruction set,
making it attractive for a wide range of applications. The
instruction set is divided in the Data Manipulation and the
Program Control Groups. The Data Manipulation Group
contains the specific instructions for manipulating the
value of the EU’s accumulator. Each instruction performs
operations on unsigned numbers. The Program Control
Group contains the instructions for altering the program
execution.

The EU can perform the following Data Manipulation
instructions: Addition with/without carry and Subfraction
with/without borrow and Compare; Logical functions:
And, Or, Xor, Not and Bit test; Shift arithmetic and logic
left/right; Rotate and rotate through carry left/right;
Increment/decrement the accumulator and negation.

The Program Control instructions are: Slice counter
manipulation: Jump, Call and Returm, Data movement,
Data-Stack manipulation: Push and Pop; Input from and
Output fo port; Load from and Sfore in the Data memory.
Each program control instruction is conditioned, thus
offering a great flexibility. This way, the source code can
be optimized, because most of the Compare and Jump
statements can be replaced by conditional instructions (ex.
conditioned Move).

VIL THE CREC MAIN EXECUTION UNIT

The main part of the CREC processor is the scalable EU.
The word length of the EU is n x 4 bits. At the current
state of the implementation, the parameter n is limited to 4,
so the word length can be up to 16 bits. The complete
structure of the EU is presented on Fig. 5.

There are two variants of the CREC EU implementation,
but from the functional point of view they are absolutely
the same. In the first one, each subunit is strongly
optimized for the Xilinx VirtexE FPGA family, occupying
the same number of Virtex Slices (2 x » Slices) and using
the dedicated Fast Carry Logic. This leads to a platform-
dependent solution, but there was the need to increase the
performance of the EU and to obtain almost equal
propagation times. The second variant uses a general
VHDL code, not optimized for any FPGA devices family.

455

This increases CREC’s portability, but the architectural
optimizations become the VEHIDL compiler’s task.

Instruetion Address.
Code Lines

Ry

Rs

Ry

Load Buffer
Tnput Port
Stack
Immediate
Operand

[l el

1
i
gl
4

1
=
2
% g
EXECUTION UNLF

Decoder pi— l R lsiplonar Ut

Tracalrg o

v W
Shift Left Umit 2
SHLROLNEG F oyl
MNODEC
¥ v ¥ H
ShiRt Right Unit Arithmetic Unit Cany
SHRRORMOT ADD/SUB Genterator
Y S—

1
I
1
1
1
! 1
I Register H
Aecumdser :
CONDITION [
BUS !
| i
] ¥ pi
b) Pl
1 13| Control Signal |
} 5] Generator .
H il

I "
L H
] natler Duit Y
! s B

v
L EESY Register Operand
25252803 Vi 5
&¥e"3g
=

Fig. 5. The basic CREC Execution Unit

The EU has six major parts: Decoding Unit (decodes the
instruction code); Confrol Unit (generates the control
signals for the Program Control Group); Multiplexer Unit
(selects the second operand of binary instructions);
Operating Unit (implements the data manipulating
operations); Accumulator Unit; Flag Unit (contains the
two flags: Carry and Zero) and the Buffer Unit (interfaces
the EU with the processor’s intemal data buses).

The Operating Unit is organized in a symmetrical way.
At the right side are the binary operation blocks, and at the
left side are the unary operation blocks. Its four blocks are:
the Logic Unit, the Arithmetic Unit, the Shift Left Unit and
the Shift Right Unit.

The output of the Flag Unit is a 6-bits wide Condition
Bus for the six possible condition cases: Zero, Not Zero,
Carry, Not Carry, Above and Below or Egqual. This bus
validates the conditioned Program Control instructions.

The Multiplexer Unit is built on two levels for optimal
instruction encoding. At the first level, the Register and the
Data MUXs have the same selector. The second 2:1
multiplexer selects the input operand for the instruction.
This Unit is also customizable: only those input lines
would be implemented, which are actually used by the EU.
In Virtex FPGAs, only 8-to-1 multiplexers can be
implemented on a single level of CLBs. For this reason,
the multiplexer is optimized for up to 8 inputs. For CREC
architecture with more than 8 EUs, the multiplexers are
implemented on two levels of logic. This disadvantage can
be overcome by wusing FPGAs containing wider

multiplexers. The most important aspect is that this unit’s
size increases linearly with the increase of the word length
and the number of EUs.

The Accumulator Unit stores the primary operand also
the result of each Data Manipulation instruction.

The Decoding Unit generates the appropriate signals for
the four functional parts of the Operating Unit and for the
Carry Generator. The Control Unit generates the validation
signals for the Program Control instructions taking into
account the Condition Bus. The condition code is
compared against the value of the flags generated by the
previous non-program control instruction.

The Buffer Unir consists of two simple tri-state buffers,
to select the operands for the Program Control instructions.

The Execution Unit is customizable. For example, if an
EU will not execute any Logical Instruction, then this part
is simply cut out, resulting in a gain of space. All four units
use the same number of Virtex slices. For this reason, the
size of the Operating Unit is growing linearly with the
word length. But the operating time will not decrease
significantly, because the number of CLB levels is
constant. The EU can be easily pipelined for higher
frequency operation.

VIII. THE IMPLEMENTATION OF THE SMITH-
WATERMAN ALGORITHM

Because of the initial conditions (the parameters ins, del
and sub can take any value between 0 and 15), the size of
the generated results strongly increases and it is necessary
to store them on 16 bits, in order to cover the worst case.

S T Left PE
% Y b
EUL EU2 EUS
EU6 EU3 EU4
L] PE

v
d

Fig. 6. The structare of a Processing Element

In the implementation of the Smith-Waterman
algorithm, 6 EUs of 16 bits were considered to form one
Swmith-Waterman Processing Element (PE) as shown on
Fig. 6. The register associations are as follows: § - R1, T
— R2, a — R3, b — R4, ¢ — R5 and an additional R6
register for temporarily storing the value of S. The portion
of code for one PE is presented in Fig. 7. The output value
of the left PE is symbolized with R?, because the index of
this register will be known only in the case of the fully
written source code. For example the 1% PE has the
registers from R1 to R6 as shown on the Fig. 6. The 2™ PE
will have the next six registers, namely the R7 through
R12. The 3 PE will have R13 to R18, and so on. This way
the Left PE entry for the 2 PE will be derived from R3
and for the 3 PE from R9.

456

The first 4 instructions present the updating phase of
each cycle, when the values/parameters are shifted.

[11 Mov R2,P2 ; Read T from Port 2

[2] ™MOV R4,R3 ibhed
[3] MOV R3,R5 jaee
[4] MOV R5,R? ¢ dienpr
[5] MOV R6,RI1
[6] CMP R1,R2 =87
[71 ME R1,0 ; Move if Equal
[8] MNE R1,SUB ;Move if Not Equal
[9] ADD R3,R1 ; a+SUB
[10] MOV R1,R6
[11] ADD R4,INS ;htINS
[12] ADD RS,DEL ;c+DEL
[13] CMP R3,R4 ; Calculation of &
[14] MA R3,R4 ; Move if Above
[15] CMP R3,R5
[16] MA R3,RS ; The minimum of 3 numbers

[17] SUB R4, INS
[18] SUB R5,DEL

; Restoring the b and ¢
; values

Fig. 7. The task of one Processing Element

The slice mapping of the above-presented algorithm is
shown on the Table 1. A 2:1 compression ratio was
obtained. The number of program slices remains constant
and does not depend on the number of PEs, due to the
independent and parallel work of the EUs.

TABLE 1. SLICE MAPPING OF THE PE’S TASK

EU1 EU2 | EU3 EU4 EUS EU6

1 mov 12,p2tmov r3,r5|mov r4,r3|mov r5,r? jmov r6,r1
2 lemprl2 add 4,ins|add r5,del

3 jme rl0

4 |mne rl,sub

5 |movrl,6 add r3,rl

6 cmp 13,r4{

7 ma 13,rd|sub rd,ins

8 cmp 13,65

9 ma r13,r5 sub r5,del

The whole structure is presented on the Fig. 8. The 3
FIFO memories are implemented in the internal
BlockRAMs of the FPGA devices taking advantage of the
dual porting possibility. The § and the F sirings are
initialized by the host computer and the results are stored
in the d parameters array. This array must be filled initially
with the ¢ parameters.

The FIFO memories are connected to the Processing
Elements by means of the Input and Output Ports of the
appropriate Execution Units.

The ins, del and sub parameters are implemented as
simple registers and only one copy exists in the whole
system. From the occupied space point of view in the
FPGA chip this is a better approach than to store locally
the value of these parameters for each Processing Element.
This way the three parameters are very simple custom
Execution Units, containing only the accumulator register
and a few control parts.

Initially they are loaded with the corresponding
parameter values, after they can deliver the numbers to the
corresponding Execution Units of the Processing
Elements. In the case of the 1" PE the customized ins
Execution Unit is connected to the FU4, the del is linked

with EUS and sub with EU/, as shown on Table 1. For the
2™ PE the connections are as follows: ins — EUI0, del —
EU! and sub — EU7, and so on for the further Processing

Elements.
4096 % 5bits | s
FIFO i
S string et
|
L Smith-Waterman :
ystolic Array
4096 x Sbhils | 5
FIFO
T stri
Simne 16 |4096 x 16 bits | 16
P T FIFO —
D parameters
S §
PE,; PE, PE;

Fig. 8. The structure of the proposed solutions

IX. EXPERIMENTAL RESULTS

The algorithm was first implemented in software using
Borland Delphi compiler on a PC station featuring an
AMD Athlon XP 1700+ based system with 128 MB DDR
SDRAM. The average execution time was 210
milliseconds.

Then, the algorithm was implemented using the
methodology exposed above, in a CREC system. The
physical support for this implementation was a Virtex E600
FPGA on a Nallatech Strathnuey® + Ballyderl® board.

The implementation was realized and simulated for
several Xilinx FPGA chips. In a Spartan3 5000 chip, the
maximal possible implementation occupies 8250 CLBs,
which means a SW array composed of 33 PEs can be
implemented, In a Virtex II 8000 chip, the maximal
possible implementation occupies 11,500 CLBs, which
means a SW array composed of 46 PEs can be
implemented. Table 2 contains different statistics for
several Xilinx FPGA devices:

TABLE 2. SPACE OCCUPATION AND PERFORMANCE

. Used Number Execution Speedu;
FPGA Device oy g orppe Freauency ™o]::'ati_qf_
Spartanil 600E _ 3.430 7 100 MHz _ 216ms . 097
Spartan3 1500 3,250 13 150 MHz 77 ms 2.73
Spartan3 4000 6,750 27 150 MHz 37 ms 5.68
Spartan3 5000 8,250 33 150 MHz 31 ms 6.77
Virtex 600E 3,430 7l 100 MHz 216 ms 0.97
Virtex 3200E 15,680 32 100 MHz 47 ms 447
VirtexII 1000 1,250 5 150 MHz 201 ms 1.04
VirtexI1 3000 3,500 14 150 MHz 72 ms 292
VirtexII 6000 8,250 33 150 MHz 31 ms 6.77
Virtexil 8000 11,500 46 150 MHz 22 ms 9.55

The CREC-based implementation runs at 100 MHz in a
VirtexE 600 chip. The execution time estimations were
performed by taking into consideration the
computationally-intensive part of the algorithm, when all

457

the PEs are operational. In this case 7 PEs can work in
parallel, and for a sequence of 4096 characters in the T
stream 4096 x 9 = 36,864 clock cycles are necessary to
perform the computations. But for 4096 characters in the §
stream 4096 / 7 = 586 computation cycles are needed. This
means that the total execution time will result in
21,570k x 10 ns = 215,700 ps = 216 ms.

X. CONCLUSIONS

In conclusion, the CREC-based implementation is
approximately 2+6 times faster than the PC-based one with
an adequate FPGA chip. With the largest VirtexIl chip a
speedup of approximately one order of magnitude can be
achieved. Further work will consist in optimizing the
CREC implementation to work on higher frequencies
(~200MHz) on Spartan3 and VirtexIl families thus
obtaining greater performances.

An important aspect of this implementation against the
dedicated systolic one is the possibility of extending the
algorithm. The application may pre or post process the
data, different software modules may be added and
implemented in the design thus achieving great flexibility
with a few efforts.

This result is a new proof of the efficiency of the CREC
general-purpose reconfigurable computer. It can be easily
implemented also as an embedded system in different
applications, where great performance is needed at lower
price.

XI. REFERENCES
[1] Smith, T. F. and Waterman, M. S. “Identification of

common molecular subsequence.” Jowrnal of
Molecular Biology, 147, 1981, 196-197.

[2] National Center for Biotechnology Information.
BLAST home page, 2003.
http://www.ncbi.nlm.nih.gov/blast.

[3] Lipton, R. and Lopresti, D. “A systolic array for rapid
string comparison”, in Proceedings of the Chapel Hill
Conference on VLSI, 1985, 363-376.

[4] Yu, C. W, Kwong, K. H,, Lee, K. H,, Leong, P. H. W,
“A Smith-Waterman Systolic Cell”, in Proceedings of
the 13th Conference on Field-Programmable Logic
and Applications (FPL2003), Springer-Verlag
Publishing House, Lisbon, September 2003, 375-384.

[5] Cret, O., Pusztai, K., Vancea, C. Szente, B, “CREC: A
Novel reconfigurable Computing Design
Methodology™, in Proceedings of the 17th IPDPS,
Nice, France, April 2003, 175.

[6] DeHon, A. “Reconfigurable Architectures for General-
Purpose Computing”. PAD. Thesis, MIT, 1996.

[7] Szente, B., Vancea, C., Uiorean, L., Rusu, F., Cret, O,
Pusztai, K. “The CREC General Purpose
Reconfigurable Computer”, in Proceedings of the IP
Based SoC Design Conference, Grenoble, France,
November 2003, 217-222.

[8] Singh, H., Lee, M. H., Lu, G., Kurdahi, F., Baghrzadeh,
N., Chaves Filho, E. “MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and
Computation-Intensive Applications™. IEEE
Transactions on Computers, Vol. 49, 5, May 2000.

[9]1 Greer, C. and Franklin, P. “RaPiD - reconfigurable
pipelined datapath”, in R. W. Hartenstein and M.
Glesner, editors, Field-Programmable Logic: Smart
Applications, New Paradigms and Compilers. 6th
International Workshop on Field-Programmable
Logic and Applications, Darmstadt, Germany,
September 1996, 126-135.

458

