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Abstract — Content-Addressable Memories (CAMs) are paral-
lel search circuits, typically found in embedded circnitry. This
paper presents a reconfigurable implementation of a CAM on
an FPGA (Field Programmable Gate Array) device using the
JBits package. This package provides software control for all
configurable FPGA resources. The result obtained is a fully-
interrogatable CAM, with support for run-time reconfigura-
tion. This approach produces a fast and very flexible alterna-
tive to traditional implementations. Timings obtained are
similar to those of embedded hardware circuits, which makes
the core faster than previous reconfigurable CAM cores. A
simple application was designed for testing the core function-
ality, which has proven its utility in search-intensive applica-
tions.

I. INTRODUCTION

Content-addressable memories represent hardware
search engines used in search-intensive applications. They
offer significant improvements compared to other search
methods (for example, binary or tree-based search) due to
the fact that they enable parallel comparison of the search
pattern to all entries in the stored list. Such memories are
identificd by the content of data themselves, rather than an
address.

Due to limitations concerning costs, CAM use has been
restricted to certain niche applications, embedded on cus-
tom designs, especially processor caches. In the last few
years, many new opportunities of using CAM properties
have been identified, including Ethernet address lookup,
data compression, database accelerators, pattern recogni-
tion, neural networks, high-bandwidth address filtering,
routing, security, or information encryption on a packet-
by-packet basis for high-performance data switches, fire-
walls, bridges, and routers [1], [2].

In this paper we present the design and implementation
of a reconfigurable CAM on an FPGA device. This im-
plementation makes use of the run-time reconfiguration
capabilities offered by the JBits package. JBits offers an
application programming interface to Xilinx FPGA bit-
streams, allowing the design and dynamic reconfiguration
of Xilinx Virtex devices [3]. Due to the run-time recon-
figuration support, logic and routing resources can be dy-
namically tailored to the application requirements [4].

An implementation of a CAM with the JBits package is
described in [5]. This approach uses the reconfiguration
capabilities of JBits for replacing flip-flops with LUTs.
Data is written to the CAM by reconfiguring the LUT con-
tents. A different approach is considered in this paper. The
CAM cell includes a flip-flop and additional circuitry for
the matching. The structure was designed as to reduce as
much as possible the required connection wires, since the
routing resources are limited. The matching functionality is
more complex than that of [5], supporting a fully-

Cristina Savin
Computer Science Department
Technical University of Cluj-Napoca
26-28 Gh. Baritiu St., 400027 Cluj-Napoca
Romania
savin@cs-gw.utcluj.ro

interrogatable configuration. The price paid for flexibility
is that of increased complexity.

The organization of this paper is as follows. Section II
presents a background for content-addressable memories,
as well as an analysis of the JBits package and its associ-
ated tools. Section III describes the implementation of the
fully-interrogatable CAM. The testing procedure used for
validating the functionality of the CAM is presented in
Section IV. A comparison between our implementation
and a previous one is provided in Section V. Finally, the
conclusions related to our implementation and possible
future developments are presented in Section VI.

II. BACKGROUND
A. Content-Addressable Memories

As opposed to random-access memories (RAMs), in
which the stored data are identified by means of a unique
address assigned to each data word, content-addressable
memory words are identified by their content. CAMSs are
very useful in applications where intensive search opcra-
tions are to be performed.

In general, a search for a particular piece of data in a
RAM with n words will take a time of ¢ = f{n), where ¢ is
the time taken to fetch and comparc one word of the mem-
ory and f is an increasing function of n. Hence, with an
increase in n, the search time increases too. In the case of a
CAM with n words, the search time 1s almost independent
of n because all the words may be searched in parallel.
Only one cycle time is required to determine if the desired
word is in memory, and, if present, one more cycle time is
required to retrieve it [6]. To be able to perform a parallel
search, each data word needs to have a dedicated circuit,
which increases significantly the cost of CAMs.

For some implementations, it suffices to know whether
or not the searched word is found in the memory. Other
implementations also supply the location where the data
word was found.

Based on the function used for determining a match,
content-addressable memories can be classified into exact
match and comparison CAMs. An exact match CAM iden-
tifies data based on equality with certain key data. In a
comparison CAM, the search is based on a general com-
parison, using various relational operators. Usually, differ-
ent parts of the memory word can be used as the key. In
the most general case, any part of the word can be used for
the matching.

Based on the values that can be stored, there are two
types of CAMs: binary and ternary [7]. Binary CAMs can
only store binary digits ('0", '1"), while ternary CAMs can
store binary digits as well as “don’t care” values ('X").

459



Ternary CAMs may have a globai mask as well, which
allows the search pattern to also contain “don’t care”
values. This is useful when the width of the search pattern
is small, so that two or more entries can be stored in the
same CAM location.

CAM words have two parts. The most important part is
the search fleld, which is the part of the word that is
matched with the search pattern. Another part is the refurn
field, which is the information returned during a read op-
cration. This field may contain related information or an
index.

Fig. 1 shows the block diagram of an m-word, n-bits per
word CAM [6]. Before the search process is started, the
word to be searched is loaded into the argument register 4.
The segment of interest from the word is specified by set-
ting the corresponding bits of the key/mask register K to
'1". Once the argument and key/mask registers are set, each
word in memory is compared in parallel with the content
of the argument register. If a word matches the argument,
the corresponding bit of the match register A/ is set. Since
any set of the n bits of the argument can be selected as key,
it is possible that several memory words yield a match. In
this case, the selection circuitry ensures that only one word
is chosen, based on a certain priority policy.

Two priority policies can be used [8]:

o Inherent priority. In this case, the CAM words are
stored in order of priority. For example, by using a
priority encoder, the top address of the CAM may
have the highest priority and the bottom address may
have the lowest priority.

e Explicit priority. An explicit priority field is added to
each CAM word. In case of a multiple match, the
word with the highest explicit priority, as stored in the
priority field, is returned,

The advantage of explicit priority is that updating the
CAM becomes easier, since a new word can always be
added after the last word in the CAM. When using inherent
priority, an address has to be reserved by shifting down
other words and updating the memory that is addressed by
the CAM [8].
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Fig. 1. Block diagram ef a content-addressable memory

B. The JBits Package

The JBits package consists of a set of Java classes that
provide an API to the configuration bitstream of the Xilinx
Virtex FPGA devices. It allows software control for con-
figuring the device’s resources, such as CLBs, BRAMs,
10Bs, and routing elements. This package can operate on
bitstreams generated by CAD tools or on those read back
from the device itself.

IBits may be used as a stand-alone tool or as a base to
produce other tools, including traditional place-and-route
CAD applications, as well as more application-specific
tools. The resulting model is actually a Java code, which
makes the software portable and it allows a better integra-
tion within the main system. As an example, a graphical
user interface (GUI) can be constructed for the reconfigu-
ration application in a simple way, maintaining the consis-
tency between the software interface and the FPGA device.

The JBits package is organized on several layers. The
Bit-Level Interface provides access to all the configurable
resources of a Virtex device, including the look-up tables
(LUTs) inside each Configurable Logic Block (CLB) and
the routing resources adjacent to the CLBs. This interface
is the lowermost layer that allows to set or clear a single bit
or a group of bits in the configuration bitstream of the de-
vice. The device architecture is represented as a two-
dimensional array of CLBs, and each CLB is referenced by
a row and column.

The Bit-Level Interface interacts with the Bitstream
class, which manages the device’ configuration bitstream
and provides support for reading and writing bitstreams
from and to files. This class can also read back the existing
configuration data from the operating device, which is nec-
essary for dynamic reconfiguration [4].

There are four main functions provided by the Bit-Level
Interface. The read() and write() functions allow configu-
ration bitstreams to be read or wrtten. The get(} function
allows to query the state of a programmable logic resource,
while the set() function allows to set the state of a pro-
grammable logic resource to a specified value. The Bit-
Level Interface also contains a series of constants which
define each programmable resource of the device and the
values they can be set to.

Another component of the JBits package is the Run-
Time Parameterizable Core (RTPCore) library. It contains
a set of classes that define macrocells or cores representing
the most common circuit elements, such as counters, ad-
ders, registers, and other standard Xilinx Unified Library
logic and computation functions. These cores can be dy-
namically parameterized and relocated within the device.
Currently, IBits provides Unified Library primitives for the
Virtex CLB and Block RAM resources. In addition to
these primitive cores, other non-primitive RTP cores can
be used, which are created by instantiating primitive or
non-primitive subcores connected with nets and busses [9].

The Java Run-Time Reconfiguration (JRTR) API allows
small changes to be made directly to the Virtex device,
without interrupting operations. Such changes can be done
much faster than with usual methods. The JRTR API keeps
track of the changes done in the configuration and only the
necessary data is rewritten to the device. A much more
detailed description of specific aspects of the Virtex de-
vices related to reconfigaration are presented in [2].
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The Xilinx Hardware Interface (XHWIF) offers a port-
able layer for connecting the JBits API to the FPGA-based
hardware. This interface standardizes the way that JBits
applications communicate with the hardware, so that using
the same interface, applications can communicate with a
variety of boards. All the hardware specific information is
hidden inside of a class that implements the XHWIF inter-
face.

XHWIF contains methods for describing the type and
number of FPGA devices on the board, for configuring the
devices, for reading back the configuration memory of the
devices, for incrementing the on-board clock, and for read-
ing and writing from/to on-board memories, if they are
available.

The XHWIF interface is implemented as a server appli-
cation. This server allows other applications to communi-
cate with reconfigurable computing boards located any-
where across the Intermmet. This capability allows multiple
users to access a board and to debug designs using tools
such as BoardScope, without having direct access to the
hardware.

BoardScope 1s an interactive debug tool for Virtex de-
vices. It provides a simple and powerful interface for visu-
alizing the contents of FPGA circuits, during their opera-
tional state [10]. It features a CLB-based design view
mode, which displays the output state of all CLBs and al-
lows interactive probing of internal CLB state. The wave-
form display mode allows to view signals and busses in a
way similar to that used by circuit simulators. BoardScope
uses the XHWTIF interface to communicate with the FPGA-
based hardware.

The Virtex Device Simulator (VirtexDS) is also part of
the JBits package and provides a software model of the

- entire Virtex family of FPGA devices. The approach taken
is to simulate at the device level, by providing an interface
much alike the actual hardware [11]. By operating at the
device level, VirtexDS simulates the actual FPGA device,
and therefore provides a high level of simulation accuracy.
It also allows to identify illegal configurations that would
damage the actual hardware, which is important for debug-
ging run-time reconfigurable applications. The device
simulator interface is identical to that of the actual hard-
ware, which allows existing applications, including the
BogrdScope debug tool, to interface directly to the simula-
tor with no modifications.

[I. DESIGN AND IMPLEMENTATION

All developed cores are included in the CAM package.
This includes several sub-packages. The most important
one, which gathers the cores used for the actual CAM im-
plementation, is CAMCores. The other two packages de-
fine the TestCores and the test classes used for validating
the functionality of cores in the first one.

The implementation uses the classical model for the
CAM cell, with some additions included for the purpose of
reducing as much as possible the required wires. In this
way, cells can be cascaded both horizontally through the
match lines, and vertically through the Q lines. A block
diagram of the CAM cell implemented in a CLB is shown
in Fig. 2. Cascading the cores adds some overhead to the
operations, since the signals must propagate throughout the
CAM.

Tig. 2. The CAM cell implemented in a CLB

In the JBits implementation, the LUT4 core from the
ULPrimitives package was used for gencrating the Mi+,
Qi+ outputs and the clock for the D flip-flop. Conse-
quently, the cell requires three LUTs and one flip-flop. A
different CLB was used for implementing each cell. Thus,
the cell has CLB granularity and the core width and height
are 1.

Fig. 3 illustrates the structure of a cell inside the CAM
array. Some special cases concern the first row and the
lefimost cells. A simple way of dealing with these special
cells would be to connect Qi or Mi to the default values ('O’
and 'l', respectively). This variant was used at the begin-
ning of the development process, for simplicity reasons.
Some problems could be identified for this approach. The
most important is that it required some external cores for
generating the constant values, extending the device space
needed for the implementation. This is why a different
approach was preferred, namely defining some special
cores for dealing with these cases. As a result, the number
of input pins is reduced for these cells, by eliminating Qi
and Mi, respectively.

CAM cells are grouped as words in the CAM core. The
cells are lined horizontally, thus the height of the core is 1,
while the width is given by the word size, specified by the
width of the input busses 4 and K. The CAM array is de-
fined in a manner similar to that used for the CAM word,
by grouping together CAM words vertically. This configu-
ration was preferred since it achieves a uniform manage-
ment of these cores and eases the connections to the other
components. '

Mi+

Fig. 3, Structure of the CAM cell
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A predefined selection circuit. namely the OneHof core.
exists in the
com.xilinx.JBits. Virtex RTPCore.CAM

package. Initially, this core was used as selection circuit.
but conflicts occurred related to some CLB resources. The
cause of this problem seems to be related to the automatic
placement of cores with different granularities. This behav-
ior was not documented in the JBits API, but the tests per-
formed during deve]opment indicate that the addChild
methad of the RTPCore class places elements of smaller
granularity over the neighboring component. This problem
was solved by extending the dimension of the neighboring
core with 1.

Although an equivalent result would have been obtained
by modifying the Oneflot width accordingly, building an
entirely different core was preferred The new selection
circuit is called Selection, and it is also included in the
CAMCores package. It is based on the selection cell de-
fined by the SelCell core.

The CAMBigBox core connects everything together.
CAM words are placed one in top of the other, in the left
side of the core. The selection circuit and the match regis-
ter are placed to the right of the CAM array. An output
register is added for buffering the output bus Q.

IV. TESTING PROCEDURE

All cores in the CAMCores package were tested in a
similar fashion. For each such core, a TestCore class was
defined. This is a core which instantiates the component to
be tested and also provides the means to supply the values
for the input busses and nets. For this purpose, the TestIn-
putVector class from the package

com.xilinx. JBits. Virtex. RTPCore. TestGeneration

was used. This core can be used for providing inputs to the
test cores. In one version, the values for the core outputs
are writien to the BRAM from a specified external file,
provided as parameter when implementing the core. The
final version of the CAM core defines several input files
containing the test vectors,

The classes from the CAMTesters package are used for
generating the actual bit files and the associated .cit files.
which are then imported into BoardScope for debugging
and testing. Some simple testbench applications were also
designed, for testing partial reconfiguration behavior.

The CellTesiCore in the TestCores package instantiates
a CAMCell, a TestinputVector to provide the required in-
puts, and a Register as output buffer. A similar structure is
used for testing the CAM word, the CAM array, and the
selection circuitry.

In addition to the TesiCore and its associated Test class.
for the final test of the CAM core we used a testbench ap-
plication, illustrating the values in the match register and
the contents of the output buffer, for a succession of values
of the argument A and the key K.

The core requires two cycles per operation: the first for
selecting a certain word from the memory (the first word to
match the masked 4 vector), and the second for the actual
operation — read or write. Some problems occurred when
trying to test the CAMBigBox core. The reason is related to
the implementation of the selection circuit. The Selection
core is built by cascading several selection cells, thus dif-
ferent delays are introduced for the selection lines of the
CAM array. This causes some glitches and activates some
additional words. This problem was solved by delaying the
WE signal untif the falling edge of the second cycle. In this
way, writing is performed only after the selection lines are
stable. and the results are those expected.

Fig. 4 shows the state view of the core in the Board-
Scope window.
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V. EXPERIMENTAL RESULTS

We have compared our implementation with that pre-
sented in [5]. The main difference between the two ver-
sions of CAM consists in the way JBits run-time recon-
figuration (RTR) support is perceived and used. The im-
plementation of [5] uses RTR as an essential feature, while
our implementation only uses RTR to dynamically change
the CAM parameters (memory size and word width).

This approach was taken for flexibility reasons. The
CAM described in [5] can only be used to search for a
value, yielding a simple found/not found answer, while our
implementation allows to search for any pattern of the
same length as that of the CAM word. The contents of the
memory word are also obtained as output. On the other
hand, the CAM described in [5] can store patterns (words
including the “don’t care” value), by defining an appropri-
ate LUT function, while our CAM only stores binary val-
ues. This is one of the causes why our implementation re-
quires more resources on the device.

The major advantage of our approach is related to the
way write operations are performed. Contents of the CAM
described in [5] can be modified only by reconfiguring the
LUTs, which requires a significant time. In contrast, our
implementation allows the write operation to be performed
strictly at the hardware level. Therefore, the speed of the
circuit is similar to that of common hardware implementa-
tions, with two cycles per operation,

The supplemental features provided by our CAM im-
plementation justify the additional resources required,
making it possible not only to design classic lookup-type
components, but also to use it in more complex applica-
tions, such as data compression, pattern-recognition, neural
networks, or high-bandwidth address filtering.

Since currently the JBits API does not provide support
for timing analysis, the timing differences between the two
implementations cannot be measured.

VI. CONCLUSIONS

In this paper we have described a run-time reconfigur-
able and fully-interrogatable CAM. The run-time recon-
figuration feature allows the core to be tailored to the par-
ticular hardware design and to dynamically adapt to
changes within the system. In addition, the JBits package
allows to embed the core in more complex FPGA designs.

Compared to other existing implementations, the core-
based design using the JBits package provides much more
flexibility. Although a different design of a reconfigurable
CAM is described in [5], our design considers an alterna-
tive approach, which is closer to the structure within CAM
chips. The strengths of this core reside in its fully-
interrogatable nature and in the way the read and write
operations are performed. Disadvantages are mainly re-
lated to the increased complexity of the CAM cell. All in
all, the reconfigurable CAM presented provides the fea-
tures required by fast search-intensive applications such as
signal tracking and processing [12], routing, data compres-
sion, or real-time artificial intelligence.

Future work concerns the development of an application
providing an interactive interface to the core. Another di-
rection of study concerns the integration of the developed
core in a more complex networking application. Some ad-
ditional research could also be done to find the possibilities
of reducing propagation delays when cascading several
cells, of either the selection circuit or the memory array, by
using specific architectural features of the target device.
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