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Abstract — The adaptive dual controllers are solutions for the
control problems that involve uncertainty. Unfortunately, the
obtaining of an optimal dual controller is a difficult problem
from both analytical and numerical points of view. The
paper presents a method to construct a suboptimal controller
with dual features, method that involves the Temporal
Difference (TD) reinforcement learning algerithms. In order
to improve performances in the early stages of the control
process, the TD algorithms will work in conjunction with a
maximum entropy model of the controlled system. This model
will be used to generate simulated experiences for off-lime
training. The procedure is discussed and evaluated on 2 well-
known nounlinear system.

1. INTRODUCTION

One way to handle the uncertainties in a control problem
is to use an adaptive controller, which to estimate the
unknown model! of the process. During the control process,
a conflict appears between two opposite goals: the
information gathering and the control quality. The problem
was presented by A. A. Feldbaum [1] who introduced a
new type of control system: the dual control system.
According with [2], a dual control system is a control
system that works in uncertainty conditions and where the
control signal has two purposes: to cautiously follow the
control goal and to excite the controlled process in order to
obtain better information.

Feldbaum proved that the solution to the dual control
problem could be obtained using the dynamical
programming. The equations obtained by this method are
difficult to resolve by analytical or numerical methods.
Supplementary, a solution based on the dynamical
programming supposes that a perfect model of the system
that must be controlled is known and, consequently, such
solutions are of little use. We will focus on a set of
methods from reinforcement leaming domain ([3]),
methods that provide approximations of the optimal
solutions that can be obtained by dynamical programming.
More specifically, we consider the temporal difference
(TD) learning, which is a combination of concepts
belonging to the Monte Carlo and dynamical programming
methods. Like the Monte Carlo methods, the TD learning
does not need a model of the environment’s dynamic in
order to learn and like the dynamical programming it can
update estimates based on other estimates without waiting
for the end of the experiment.

Our goal is to control a discrete time multi-input single-
output nonlinear system described by equation:

Y+ = fx@),u(f)+ el +1) n
where x(7) is the state array at the time step ¢,
X(I) = [}J(I),...,y(f - m)vu(t - I),._.,u{! . p)} ’ (2)
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¥(t)is the output of the system and u(¢) is the control

array. e(f) represents the noise and let us suppose that we

have a Gaussian noise with the average 0 and variance c”.

The idea of using approximations to overcome the
computational difficulties of the Feldbaum’s dual control
is well known. Surveys on this topic can be found in [4,5].
We are interested by the nonparametric approach to
modeling nonlinear systems and to show that the
reinforcement learning can be an alternative to other
nonparametric approaches like the Gaussian ones (see
(6,7D).

The following sections present the TD(A) learning
algorithm and its possibilities to control a nonlinear
system.

II. REINFORCEMENT LEARNING

The reinforcement leaming is the name of a set of
methods and algorithms for control systems that learn from’
delayed rewards and automatically improve their
behaviors. A typical reinforcement learning problem is
described by a quadruple {S,U,T,R} where § is a finite
set of states, U is a finite set of actions,
T:S8xUx8 —[0,1] is a transition function that specifies

the probability to observe a certain state after a specified
action is performed in a specified state and R is a reward
function, R:SxU — R. The policy employed for control
is permanently improved by updating a value function
0:SxU —> R that approximates the expected long-term

return that can be obtained by executing a specified action
in a given state and after that following the current policy.
If we consider a sequence of n rewards, ry,#,....7,_; - the

n-1
expected return will be » y'r,, where O0<y<1 is a
i=0
discount factor that shows how important are the rewards
received later during the control process. This parameter
provides us a first way to obtain the desired equilibrium
between the exploitation and exploration purposes.

I1II. TILE CODING

In many practical applications, the states and actions
involve continuous values or are very large discrete sets.
Consequently, the value function cannot be represented in
memory as a table and its learning requires some
techniques of function approximation. Until recently, even
a lot of successful applications were constructed based on
function approximation; there were few theoretical
guaranties on the performances of these methods.
Fortunately, some recent papers like [8] and [9] discuss the
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convergence of TD algorithms as SARSA if linear function
approximations are used.

We will use a class of linear functions approximators
named Cerebellar Model Articulation Controllers or
CMACs (see [10,11]) that are sparse coarse coding
memories, which model the cerebellar activity. The name
of the CMAC approximations when they are used in
reinforcement learning problems is tile coding. These
approximations follow the pattern: a state-action input pair
activates a specific set of memory locations and the
arithmetic sum of the contents of these locations represents
the estimated value of the function Q.

A CMAC is composed from a set of N partitions of the
input space named tilings: T,,..,T . Each tiling T.is

composed by N, features fj,j =m that cover all input
space. Each feature f; has attached a weight w; and an
eligibility e;. The meaning of these two values will be
presented below.

An arbitrary input pair (x,u) activates a unique element
from each tiling, obtaining thus a set of features

F(.’C,H): {j‘:’j l(x,u) eﬁj’ﬁj ET;} (3)

used to estimate the value (Of(x,u) according to the
formula:

O(x,u)= X w;. €

SijeF(xu)

TD(X ) updates the weights using formula
Awy =0, (1) + 10,01 =)oy, ¥fy €T, VT, (3)

where Q and Q +1 represent the estimations of the
function @ at the time steps ¢ and f+1 during control
process. Here o, €[0,1] is a parameter named leamning

rate.

The eligibilities e; represent the contributions of the

different features f}; to the value of the input point (x,u) .

They allow distributing a reward to the all past state-action
pairs that contributed to it. The update formula for
eligibilities is

e = IF—(x!—u-)T’UFﬁJ e Fx,u)
i ]

Ave

s

©

otherwise

and we notice that the parameter A can be used to control
the updating process.
One of the advantages of a CMAC estimator is that the

estimated values @(x,u) can be computed in a efficient
way. The next section will prove the utility of this feature.

1V. SEARCHING FOR THE OPTIMAL ACTION

The approximation § can be used to identify the best
action that can be performed for a certain state of the
environment. The action is selected by computing the
maximutn:

u’ =argmax, ., Q(x,u). (7

Different algorithms can be employed to obtain the
optimal action; most of them are dependent on the method
used to approximate the function Q. A simple and largely
applicable algorithm is (see [10]):

Input: the state x, the range of the actions [umi",umax]
and a step Aw used to sample the set of actions

Qutput: the best action "

Algorithm:

n
U U
best _value « a(x,umin )
for each u from wu;, + Au to u,,, step Au
if best value < @(x, 1) then
best _value « E(x,u)
u —u
endif
endfor

*
return u

The ties are broken randomly. After 2 maximum is found,
same algorithm can be applied on a smaller interval in the
vicinity of the maximum in order to find a better
approximation for the optimal action.

The computational complexity of this algorithm depends
on the action space, the size of the step Ax and the costs

required to evaluate é(x,u). The reduced costs involved

by a CMAC estimator represents an additional
recommendation for using it in conjunction with
reinforcement learning methods.

V. INDIRECT REINFORCEMENT LEARNING

The TD(A) does not make full use of the limited
available experience. Consequently, a large number of
interactions with the environment are necessary to obtain
an optimal policy. This is a major drawback for control
problems and a solution is to use the so-called indirect
reinforcement learning methods, methods that try to
establish a model for the environment. The direct and
indirect reinforcement learning methods are working
together. Between two interactions with the environment,
the model will be used to generate simulated experiences,
these being used to improve the estimated value function

Q.

A model for the environment is basically a solution to a
prediction problem where the values of p—1 random
variables JX),.., X, ; are used to predict the value of the

random variable X', . In our case, the input values will be

the current state and the action and the predicted value will
be the next state. As a framework for this prediction
problem we will use the Maximum Entropy Principle
([12]) and in following paragraphs we will build two
different models for the environment. For the first one, we
will suppose that X,,...X,are continuous, real valued

variables.
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The maximum entropy based modeling consists in
representing the uncertainty regarding the values of the
random variable X, by selecting the maximum entropy
probability distributions from all distributions that satisfy
the constraints imposed by the a priori information. We
will represent the a priori information regarding a
probability distribution P as a set of pairs (p,a) where ¢
is a function and a a real value. The constraint imposed
on the probability distribution P is that Ep(¢) =a where
E, denotes the averaged (expected) value regarding the
probability law P . The functions ¢ are called observables
and the values a levels.

In the process of identifying of a maximum entropy
probability distribution P for the prediction problem
Xy X pog = X, We will use the & degree polynomial
regression. This is a method to construct a k degree
polynomial Oy (X),..,X ;) starting from a sample of the
random variables X7,..,X,in such way that, on the
sample, the differences between Oy (Xy....X 1) and X,
be minimized relatively to a specified measure.

In the above conditions, as is proved in [12], we have
following result:

Proposition 1: Let X =(Xj,..,X,) be a random vector

with values in R? and @, a polynomial of p-1
variables and the degree <k. Let us consider the
observable

[ = Gt (X130s X [Qe oo X, D X i = 1ep o 1 (B)

If we choose for X the probability distribution of
maximum Shannon entropy that satisfies the constraints
defined by the previous observable then the probability
distribution for X, when X;=x,i=l.p-1 is a
Gaussian distribution with mean 0y (x,...,x,;) and the
variance given by the level of the first observable.

The levels of the observables are constantly updated
after each interaction with the environment.

For the second model of the environment, we will
suppose that the random variable X, has discrete real
values. The rest of random variables, Xi,...,X b keep

their real continuous values, We will use following
notations: C = {¢;,..,c;} represents the set of allowable

values for X e 0 denotes a § size training set
partitioned in the subsets €,..,Q;according with the
Xp
covariance comrelation matrix for the subset Q,j=1.J

the probability that X

values, m’ and Z/ represent the mean and the

and p; represents

p=Cp
probability estimated over Q, j=1..J. Let us consider

the functions k;(x,...x,)=1iff x,=¢;, j=1..J and

the projection  functions  x;(x,..x,)=x;  and

X (X Xy} =X - X, BE=1p—1.
In these conditions we can prove the following result:
Proposition 2: If we use for X a probability distribution

of maximum Shannon entropy that satisfies the constraints
imposed by the a priori information

(hj-xp,pjomi)j=1.Ji=l.p-1
(h; X p j(Eh +mi -m{)), j=1.J,,k=1..p-1 9
(hjsp)j=1.

then the probability distribution of the random vector

Xl,...,Xpﬁl when X, =c¢; is the Gaussian distribution

with mean 7’ and the covariance matrix 27 .

Proof sketch. We must prove that the density of the
marginal probability distribution of the random vector
X'= (X X poy) When X, =c; 18

rexp{-(x-m! Y2 (xemi)} (10)
ey

fi(x)=
VIZ/ |(2m)

If Pis a probability distribution of the random vector
X =(X,,.., X ) then the Shannon entropy for P is:

S(Py=— Y p; [f;(:)log f;(x")dx"+ 3, p;log(p,) (11)

j=1.d J=lJ
To maximize S(P), we apply the Lagrange multipliers
method and obtain the Lagrangean function:

LfivsS3sM) == Ep; [1,Gl0g [0
J=1l

+ ZP;IOg(Pj)’
j=1J
> A‘ij{ Py jhj(x'scl)xiﬁ(x')dx'_ijij]*

j=1.J I=L.J

i=l..p-1
Yl o [h xSV = py (S + m{m)]

=10 i=1.J

‘:.pljl

A denotes the set of Lagrange multipliers and from the

equality L(f},-..f;,A)=0 we obtain that the probability
densities of the random vector X' are defined by (10). O

—

-
=

R

bl
1l
L

In order to apply the second type model to our control
problem, the output y(z) of the controlled system must be

discretized using an aggregation function, which to map
the continuous values yp(¢) into discrete ones y(z). The

new framework is depicted in Fig. 1.

There are numerous methods to quantize the output
space and thus to convert the outputs to discrete values.
The empirical methods that divide the space in pieces with
equal sizes provide satisfactory results only for a very
small set of discretization problems. Consequently, we will
use a non uniform method to quantize the output space,
method that will assure that the most important parts of
this set are accurately represented.
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Fig. 1. An adaptive dual controller that uses an aggregation function.

The discretization method uses an unsupervised leaming
clustering algorithm (see [13]) based on the Euclidian
distance. The elements of the continuous output-space will
be divided in J groups where the value J will be
dynamically updated according to the control’s
performances and with the memory usage restrictions. We
do not need supplementary knowledge about the dynamics
of the controlled object and the complexity of the
computations is relatively low.

Let us consider Y ¢ R and & a metric on R, for
example the Euclidian metric. An unsupervised learning
clustering method has as purpose to partition a set ¥ of
unlabeled training patterns in J mmtual exclusive and
exhaustive subsets ¥,,..., ¥, named clusters. In our settings,
the set ¥ will be the output space of our control problem.
We consider C={q...,c;}, J evenly distributed
centroids from R, which they are used to represent the J
clusters and updated according to the following algorithm.

During the control process, we obtain a sequence of
outputs y,,#=0. An output y, will be associated to the

closest centroid ¢; € C according with the metric & and
implicitly to the ¥, cluster. We obtain an aggregation
af, Y = {cy,.n0} defined by
af,(y,)=c; where d(y,,cj):‘_:nili‘r}d(y,,cj). When an

function

output y, is classified to a centroid ¢;, we adjust ¢; by
the following rule:

1

. (12)
1+ m|

(1t ! t
¢; =(-o})e; +a}y, where o=

The mass mj denotes the mumber of the outputs
y; €Y,05i<r that were classified to ¢; . Thus, we obtain

a convergent sequence of aggregation functions gf,,#20,
one function for each control step,

VI. SIMULATION RESULTS

In order to show that the systems using reinforcement
learning are able to perform nonlinear control even if
initially we do not have any information about the process,
let us consider the system presented in [6]:

Y+ 1) = [(x(0) + g(x(@)u(e) + et +1) (13)
where x=y(1), f(x)=sin(x)+cos(3x) and g(x)=2.
e(t) has the variance o° =0.001. The reference signal
¥4(?) takes values in the range [0,1].

The TD( 2 ) algorithms are influenced by a large number
of parameters and their values can be crucial for the
success or failure of the control process. The identification
of an optimal set of parameters is basically a trial and error
process.

The parameter A is used to share the current reward
with the past state-action pairs that contributed to it. In our
case, for any value of the reference signal y,(z), we can

find an optimal value of the command u(f) that is

independent of the previous states of the system.
Consequently, for the parameter A, the small values are
preferable. In our tests we used the value A =0.

Regarding the configuration of the CMAC
approximation (tile coding), [14] provides a detailed
discussion about its performances and the optimal
parameters’ settings when the approximation is used
together with a continuous action set. A larger value for the
number of tilings N involves better generalization
capacitics and improved performances in the early stages
of the training. Later, the approximation quality is affected
and the best solution is to use an adaptive algorithm as
recommended in [14]. The largest N wvalue used in our
tests was 8.

The reward function R and the initial values of the
weights w; attached to the features of the CMAC

approximator have a great influence on the convergence
speed to an optimal solution, Some choices for these
parameters can favor a deep exploration of the state-action
space. Other variants can make an early preference to
already explored regions. The reward function used in our

tests was R =—(v,(t)- y(1))* +r, where 5y is a tuning
parameter. )

The parameter y is used to find equilibrium between
the exploitation and exploration necessities of the control
system. Our experiments show that a small value for v,

which favors an early exploitation of the already achieved
knowledge, is preferable for our task.

The g-greedy policy chooses the action
argmax, ((x,u) with the probability 1—¢ and, otherwise,
it selects a random action according with a uniform
distribution. It assures that there is no state-action pair that
is ignored and it is another way to balance the exploration
and exploitation. Suitable values for & are between 0.1 and
0.01.

The learning rate o, satisfies the conditions «, €[0,1],

20, =c and Zraf <ooso it will be decreasing over

time,

The employed TD( A ) algorithm is SARSA integrated in
a DYNA-Q like architecture [3] with a model of the
environment that provides planning capabilities. We used
the two types of maximum entropy principle based models
previously presented with 1 little gain of performance in
the case of the second one. This one involves also a greater
computational complexity because it requires a matrix
inversion for the covariance matrix. However, due to the
fact that covariance matrix is symmetrical and positively
defined there are faster algorithms that can be applied for
inversion.
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With above settings we are placed in the conditions
described in [8] that guarantee us the SARSA algorithm
will converge with probability 1 to a fixed bounded region.

The Figs. 2 and 3 present the output of the controlled
system and the command for a sinusoidal reference signal
y,(8) = sin(0.1-7)|. The output signal has oscillations in
the early stages of the training process and after that it
closely follows the reference signal. The case of a
piecewise constant signal, ya(@)=0 if
(¢div100)mod2=0 and 1 otherwise, is presented in Fig.

4 and Fig. 5.
VII. CONCLUSIONS

This paper presents an adaptive controller based on a
non-parametric model. The controller uses methods widely
popular in the reinforcement-learning domain and our
intention is to show that these methods can be used in the
control theory domain in order to build competitive
controllers for nonlinear systems when incomplete and
uncertain knowledge are involved.

il

Time steps

—— Quiput —Reference

Fig. 4. The output of the adaptive dual controller for a piecewise
constant reference signal. The training sequence is presented for 1100
time steps. A model of the environment, which uses covariance
matrices, is employed.

Fig. 2. The output of the adaptive dual controller for the reference signal
v = sin(0.1¢) | . The controller uses the SARSA leamning

algorithm and a model of the environment based on polynomial
regression.

Time steps

==

Fig.3. The command of the adaptive dual controiier for the reference
signal yd(f) =|sin(0.1- 7).
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Fig. 5. The command of the adaptive dual controller for a piecewise
—— Qutput —-—Refarence :
constant reference signal.

The approach is simple, elegant and does not suppose
any knowledge about the controlled system. It also has
some drawbacks, most notably, the larger number of
interaction required to obtain an optimal solution and the
relatively lack of the mathematical guaranties on the
performances of the TD(}) methods when function
approximations are involved. The first problem can be
partially solved by using an estimated model of the
environment and simulated training steps. In some cases,
this model can add significant complexity on the
computations involved during control. Another problem is
that sometimes the recommended sequence of commands
is improper, as example the amplitude of some commands
or the differences between successive commands are too
large. In this case, hybrid architectures must be used, with
command validation components that can overmride the
commands recommended by reinforcement learning.
Supplementary work is needed to reveal the full potential
of the reinforcement learmning methods for the control
theory.

Further work will go in more directions. First, we want
to address the usage of the actor-critic methods (see [15])
in conjunction with models of the environment to control
nonlinear systems. These methods are particularly

468



attractive because the selection of the optimal action based
on the value function Q(s,v) involves a very low

complexity. Another interesting issue is to investigate the
possibilities provided by the dynamical programming
applied in conjunction with an estimated model of the
environment and the influence of the full backups on the
convergence speed to an optimal solution. The dynamical
programming approach for the dual control systems was
introduced and extensively studied in [1] and we should
see if the discussion could be carried in domains where
approximations are used. In a more distant future, we are
interested in investigating the capacity of the reinforcement
learning methods to control continuous time non-linear
systems. The reinforcement learning in domains with
continuous time received relatively liftle attention and one
of the prominent papers is [16]. Other interesting future
topics are the issues regarding the efficiency in order to
obtain a real time implementation and the control of the
non minimum-phase systems
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