Observer Design via TP Model Transformation

Péter Baranyi

Computer and Automation Research Institute
of the Hungarian Academy of Sciences
Budapest, Kende u. 13-17, Hungary, H-1111

Integrated Intelligent Systems Japanese-Hungarian Laboratory
Budapest University of Technology and Economics
Milegyetem rkp. 3., Budapest, Hungary, H-1111
baranyi@ tmit.bme.hu

v

Abstract — This paper presents a case study how to
apply the recently proposed TP model transformation
technique, that has been introduced for nonlinear state-
feedback control design, to nonlinear observer design.
The study is conducted through an example. This exam-
ple treats the question of observer design to the prototyp-
ical aeroelastic wing section with structural nonlinearity.
This type of model has been traditionally used for the
theoretical as well as experimental analysis of two- di-
mensional aeroelastic behavior. The model investigated
in the paper describes the nonlinear plunge and pitch
motion of a wing, and exhibits complex nonlinear be-
havior. In preliminary works this prototypical aeroelas-
tic wing section was stabilized by a state-feedback con-
troller designed via TP model transformation and linear
matrix inequalities. Extending this control strategy with
the observer derived in this paper an output feedback
strategy can be determined. Numerical simulations are
used to provide empirical validation of the resulting ob-
server.

I INTRODUCTION

The main goal of the paper is to study how to apply the TP
(Tensor Product) model transformation to observer design.
The motivation of this goal is that the TP model transfor-
mation was proposed under the Parallel Distributed Com-
pensation (PDC) design framework [1] for nonlinear state
feedback controller design [2, 3]. The TP model transfor-
mation is capable of transforming a given time varying (pa-
rameter dependent, where the parameters may include state
variables) linear state-space model into time varying con-
vex combination of finite number of linear time invariant
models. The resulting linear time invariant models can then
be readily substituted into Linear Matrix Inequalities (LMI),
available under the PDC design framework, to determine a
time varying (parameter dependent, where the parameters
may include state variables) nonlinear controller according
to given control specifications. The whole above design can
be executed numerically by computers and hence the con-
troller can be determined without analytical derivations in
acceptable time. In most cases not all of the state variables
are available, but only some of them. This paper studies
how to apply the result of the TP model transformation to
observer design under the PDC design framework similarly
to the controller design. The resulting observer can then be
applied to estimate the unavailable state variables.
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The example of this paper is about the observer and con-
trol law design of the prototypical aeroelastic wing section.
A few papers were printed in last years dealing with the
state-feedback control design of the prototypical aeroelas-
tic wing section via TP model transformation, for instance
see [4, 3, 6]. This paper focuses attention on the observer
design to the prototypical aeroelastic wing section since not
all of the state variables of the prototypical aeroelastic wing
section are available in reality. The combination of the state-
feedback controller and the observer leads to the output
feedback control of the prototypical aeroelastic wing sec-
tion.

II. NOMENCLATURE

This section is devoted to introduce the notations being
used in this paper: {a,b,...}: scalar values. {a,b,...}:
vectors.  {A,B,...}: matrices, {4,8,...}: lensors.
R Ii<bxxlyvector space of real valued (f; x [ X --- x Iy)-
tensors. Subscript defines Iower order: for example, an ele-
ment of matrix A at row-column number i, j is symbolized
as (A); j = a; j. Systematically, the ith column vector of A is
denoted as aj, i.e. A= [a; ay ---]. 0 jn,... areindices.
o17N.---- index upper bound: for example: i = 1.1, j=
L., n=1.Nori;= 1.1, Agy: n-mode matrix of tensor
4 e Rlxbx *iv_ g%, U: n-mode matrix-tensor product.
A®,U,: multiple product as A4 x| Uy x5 Uz X3 .. Xy Up.
Detailed discussion of tensor notations and operations is
given in [7].

1. BASIC CONCEPTS

The detailed description of the TP model transformation and
PDC design framework is beyond the scope of this paper and
can be found in [1, 2, 3, 4]. In the followings a few concepts
are presented being used in this paper, for more details see
[1,2,3,4].

A.  Parameter-varying state-space model

Consider parameter-varying state-space model:
sx(t) = A(p(1)x(t) + B(p())u(z) (D

y(r) = C(p(e))x(r) + D(p(r))u(r),
with input u(z), output y(¢) and state vector x(¢). The system
matrix

sw0) = (elitn) pioy) <% @



is a parameter-varying object, where p(t) € Q is time vary-
ing N—dimensional parameter vector, where Q = [a;, ;] x
[a2,b2] x .. x [an,bn] € RN is a closed hypercube. p(¢) can
also include some (or all) elements of x(r). Further, for a
continuous-time system sx(r) = x(¢); and for a discrete-time
system sx(k) = x(k+ I) holds.

B.  Convex state-space TP model

Equ. (2) can be approximated for any parameter p(t) as
a convex combination of the R LTI system matrices S,,
r=1..R. Matrices S, are also termed as vertex system ma-
trices. Therefore, one can define basis functions w,(p(¢)) €
[0,1] C R such that matrix S(p(r)) belongs to the convex
hull of 8, as 8(p(r)) = co{81,82, .., Sk }w(p())» Where vector
w{(p(z}) contains the basis functions w,(p{z)}) of the convex
combination. The control design methodology, to be ap-
plied in this paper, uses univariate basis functions. Thus, the
explicit form of the convex combination in terms of tensor
product becomes:

(j‘(%)) ~ 3)

5. 3 3 Twnionicear ) (59).
ii=lih=1 iy=ln=1 " il U(I)
(3) is termed as TP model in this paper.  Function
wa,j(pn(f)) € [0,1] is the j-th univariate basis function de-
fined on the n-th dimension of £, and p,(r) is the r-th ele-
ment of vector p(¢). I, (n=1,...,N) is the number of univariate
basis functions used in the n-th dimension of the parameter
vector p(r). The multiple index (i,i»,...,iy) refers to the
LTI system corresponding to the i,,—th basis function in the
n-th dimension. Hence, the number of LTI vertex systems
S/ .ia,..iy 18 Obviously R = [T, [,. One can rewrite (3) in the
concise TP form as:

(59) =5 8wt (3). @
that is

S(p(r) %S & ® Wa(pa(t))-

Here, represents the approximation error, and row vector
wa(pa) € RIm contains the basis functions w, ;, (), the N+
2 -dimensional coefficient tensor § & R172X *IvxOxI 1o
constructed from the LTI vertex system matrices S;, i,,.. iy €
RO The first N dimensions of S are assigned to the di-
mensions of Q. The convex combination of the LTI vertex
systems is ensured by the conditions:

Definition 1 The TP model (4) is convex if:

i, pu(t) s wai(pa(t)) € [0,1]; (5)

Iy

i, Pn ana Pn t} (©)

This simply means that S(p(t)) is within the convex hull
of LTT vertex systems Sy, 5,4 forany p(f) € Q.
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Remark 1 S{p(t)) has finite TP model representation in
many cases (€ = 0 in (4)). However, one should face that
exact finite element TP model representation does not exist
in general (e > 0 in (4)), see [8, 9]. In this case € — D, when
the number of LTI systems involved in the TP model goes to
oo. [n the present observer design, the state-space dynamic
model of the prototypical aeroelastic wing section can be
exactly represented by a finite convex TP model.

IV. MODEL OF THE PROTOTYPICAL
AEROELASTIC WING SECTION

In the past few years various studies of aeroelastic systems
have emerged. [10] presents a detailed background and
refers to a number of papers dealing with the modelling and
control of aeroelastic systems. The following provides a
brief summary of this background.

Regarding the properties of aeroelastic systems one can
find the study of free-play non-linearity by Tang and Dowell
in[11, 12], by Price et al. in [13] and [14], by Lee et al.
in [15], and a complete study of a class of non-linearities is
in [16], [14]. O’Neil et al. [17] examined the continuous
structural non-linearity of aeroelastic systems. These papers
conclude that an aerolesatic system may exhibit a varety
of control phenomena such as limit cycle oscillation, flutter
and even chaotic vibrations.

Control strategies have also been derived for aeroelastic
systems. [18] shows that controllers, capable of stabiliz-
ing structural non-linearity over flow regimes, can be de-
rived via classical multivariable control methods. However,
while several authors have investigated the effectiveness of
linear control strategies for aeroelastic systems, experimen-
tal evidence has shown that linear control methods may not
be reliable when non-linear effects predominate. For ex-
ample in the case of large amplitude limit cycle oscillation
behaviour the linear control methodologies [18] do not sta-
bilize acroelastic systems consistently. [19] and [18] pro-
posed non-linear feedback control methodologies for a class
of non-linear structural effects of the wing section [17]. Pa-
pers [19, 20, 10] develop a controller, capable of ensoring lo-
cal asymptotic stability, via partial feedback linearization. It
has been shown that by applying two control surfaces global
stabilization can be achieved. For instance, adaptive feed-
back linearization [21] and the global feedback linearization
technique were introduced for two control actuators in the
work of [10]. TP model transformation based control de-
sign was introduced in [4, 5, 6]. This control design ensures
global asymptotic stability with one control surface and is
capable of involving various control specification beyond
stability.

A. Eguations of Motion

In this paper, we consider the problem of fiutter suppres-
sion for the prototypical aeroelastic wing section as shown
in Figure 1. The aerofoil is constrained to have two degrees
of freedom, the plunge 4 and pitch o, The equations of mo-
tion of the system have been derived in many references (for
example, see [22], and [23]), and can be wrilten as

m mX(xb }'l Cp 0 il
(e e (0)=(5 ) @)+ o
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Fig. 1: Aeroelastic mode]
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where

L= pUzbc;a (a+ + (— — ) ) +pU2bc,vB]3 (&)

M =pU* e, (a+ g + (% - a) b%) +pUbemy B,
and where x is the non-dimensional distance between elas-
tic axis and the centre of mass; m is the mass of the wing; I
is the mass moment of inertia; & is semi-chord of the wing,
and ¢ and ¢y, respectively are the pitch and plunge structural
damping coefficients, and kj, is the plunge structural spring
constant. Traditionally, there have been many ways to rep-
resent the aerodynamic force L and moment M, including
steady, quasi-steady, unsteady and non-linear aerodynamic
models. In this paper we assume the quasi-steady aerody-
namic force and moment, see work [22]. It is assumed that
L and M are accurate for the class of low velocities con-
cerned. Wind tunnel experiments are carried out in [18]. In
the above equation p is the air density, U is the free stream
velocily, ¢g, and ¢, respectively, are lift and moment coef-
ficients per angle of attack, and Cly and Cmps respectively are
lift and moment coefficients per control surface deflection,
and a is non-dimensional distance from the mid-chord to the
elastic axis. [ is the control surface deflection.

Several classes of non-linear stiffness contributions kg {ct)
have been studied in papers treating the open-loop dynamics
of aeroelastic systems [11, 16, 24, 25]. For the purpose of
illustration, we now introduce the use of polynomial non-
linearities. The non-linear stiffness term kq{0t) is obtained
by curve-fitting the measured displacement-moment data for
non-linear spring as [26]:

ko(o) =

The equations of motion derived above exhibit limit cycle
oscillation, as well as other non-linear response regimes in-
cluding chaotic response [16, 24, 26]. The system parame-
lers to be used in this paper are given in [1] and are obtained
from experimental models described in full detail in works
[10, 26].
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2.82(1—22. 10+ 1315.502 4 85800 + 17289.70c*).

With the flow velocity i = 15(m/s) and the initial condi-
tions of o = 0.1(rad) and h = 0.01{m), the resulting time
response of the non-linear system exhibits limit cycle os-
cillation, in good qualitative agreement with the behaviour
expected in this class of systems. Papers[17, 26] have shown
the relations between limit cycle oscillation, magnitudes and
initial conditions or flow velocities.

Let the equations (7) and (8) be combined and reformu-
lated into state-space mode] form:

X1 h
(¢4

x(f) = 2 =1 | ad @)=
x4 o

Then we have:

)= AEORO +BEONO =560) (1) ©

where
X3
X4
A(p(t)) =
(p(r) —kixy — (ngz + p(op))xy — cyx3 — caxy
—kax; — (k4U2 + q(xg)}xg —C3X3 — C4X4
0
0
B(p(t)) = g3U2 )
galU?
where p(z) € R¥=2 contains values x; and U. The new vari-

ables are tabulated in Table 1. One should note that the equa-
tions of motion are also dependent upon the elastic axis lo-
cation .

Table 1: System variables

= m(ly — mx3b?)
k e fakh

Ky = fapbc;a+rrtxub Plrg
— —mxg bk,
ks -———ﬁd

s —mxbEpeiy —mpEtmy
g = et Plp TTHT o

d
plo) = bk (o)
g(o) = ‘ka(a)
Cl(U) To{ rk+pquu)+m¢pU [

d
(V) = BV 2ery (3 —a)—myabcatmxapUb g (3 —a)

d
= —myghcy—mygpUbre), —mpUb ey,

d
( ) mafmxupUbsc,a(%—a) mpU B> "mu( —a)’

g3= Cl‘g{ apbc-’ﬂ mxgh? Pcmb)
ga = J{mxob?peyy +mph?® Cmy)

V. OBSERVER DESIGN

The recently proposed very powerful numerical methods
(and associated theory) for convex optimization involving
Linear Matrix Inequalities (LMI) help us with the analysis
and the design issues of dynamic systems models in accept-
able computational time [27, 28]. One direction of these



analysis and design methods is based on LMI's under the
PDC design framework [1]. In this paper we apply the TP
maode] transformation in combination with the PDC based
observer design technique to derive viable observer method-
ologies for the prototypical aeroelastic wing section defined
in the previous section. The key idea of the proposed de-
sign method is that the TP model transformation is utilized
to represent the model (9) in convex TP model form with
specific characteristics, whereupon PDC controller design
techniques can immediately be executed.

VI TP MODEL FORM OF THE PROTOTYPICAL
AEROELASTIC WING SECTION

A. TP model transformation

The goal of the TP model transformation is to transform a
given state-space model (1) into convex TP model [2, 3, 4],
in which the LTI systems form a tight convex hull. Namely,
the TP model transformation results in (4) with conditions
(5) and (6), and searches the LTT systems as a points of a
tight convex hull of S(p(r)).

The detailed description of the TP model transformation
is discussed in [2, 3, 4]. In the followings only the main
steps are briefly presented. The TP model transformation is
a numerical method and has three key steps. The first step
is the discreatisation of the given S(p(¢)) via the sampling
of S(p(r)} over a huge number of points p € 2, where € is
the transformation space. The sampling points are defined
by a dense hyper rectangular grid. In order to loose minimal
information during the discretisation we apply as dense grid
as possible. The second step extracts the LTI vertex sys-
tems from the sampled systems. This step is specialized to
find the minimal number of LT vertex systems as the vertex
points of the tight convex hull of the sampled systems. The
third step constructs the TP model based on the LTI vertex
systems obtained in the second step. It defines the continu-
ous basis functions to the LIT vertex systems.

B.  Determination of the convex TP model form of the
aeroelastic model

We execute the TP model transformation on the model (9).
First of all, according to the three steps of the TP model
transformation, let us define the transformation space Q. We
are interested in the interval U € [14,25](m/s) and we pre-
sume that the interval o € [-0.1,0.1](rad) is sufficiently
large enough, Therefore, let: Q :[14,25] x [-0.1,0.1] in
the present example (note that these intervals can arbitrar-
ily be defined). Let the grid density be defined as My x Mo,
M7 =300 and M, = 300. Step 2 of the TP model transfor-
mation yields 6 vertex LTI systems. The third steps results
in basis functions wy ;{U) and w; ;(cr) depicted in Figure 2.
When we numerically check the error between the model (9)
and the resulting TP model, we find that the error is about
10~ that is caused by the numerical computation.

In conclusion, the aeroelastic model (9) can be described
exactly in finite convex TP form of 6 vertex LTI models,
also see {4]. Note that, one may try to derive the basis func-
tions analytically from (9). The basis functions of o can
be extracted from &y (0t). Finding the basis functions of U,
however, seems to be rather complicated. In spite of this,
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the computation of the TP model transformation takes a1 few
seconds.
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Fig. 2: Basis functions on the dimensions ¢/ and o.

VII. OBSERVER DESIGN TO THE PROTOTYPICAL
AEROELASTIC WING SECTION

A.  Method for observer design under PDC framework

In reality not all the state variables are readily available in
most cases. Unavailable state variables should be estimated
in the case of state-feedback control strategy. Under this
circumstances, the question arises whether it is possible to
determine the state from the system response to some input
over some period of time, Namely, the observer is required
to satisfy:

X(t)—R(t) =0 as t— oo

where %(f) denotes the state vector estimated by the ob-
server. This condition guaranties that the steady-state error
between x(t) and X(r) converges to 0. We use the following
observer structure:

x(t) = A(p(0))R(r) + B(p(1))u(r) + K(p(1)) (¥(r) - $(1))
y(6) = C(p(M)R(0),

That is in TP model form:

X(1) = A@w(pa(t)R(0) + BEW(pa(t))u(e) + (10)

FEOW(PA ()3 -3(0))

¥e) = C‘%W(Pn{f)}ﬁ(f}-



At this point we should emphasize that in cur example the
vector p(r) does not conrain values torm the estimated state-
vector %(7). since pi (1) equals U and pa{r) equals the pitch
angle (2(7)). These variables are observable. We estimate
only state-values x3(7]) and x1(r). Conscquently the goal.
in the present case, is to determine gains in tensor X for
(10). For this goal the following LMI theorem can be find
in [1]. Buefore dealing with this LMI theorem, we introduce
a simple indexing technique. in order, to have direct link
hetween the TP model form (4) and the typical form of LMI
[ormulations:

Method 1 (Index transformation) Let

. A, B .
b; == (C: D’r_) = bil.ig. Ly

where r = ordering(iy,ir....iy) (r = 1.R = [I,f.). The
function "ordering” results in the linear index equivalent of
an N dimensional array’s index i\.02....iy, when the size of
the array is Iy x I x .. X Iy. Let the basis functions be de-
fined according to the sequence of r:

wr(p(1)) = T I (o (1))

Theorem 1 (Globally and asymptotically stable observer )
I order to ensure
I = oo,

x(t)—%(t)->0 as

in the observer strategy (10), find P > 0 and N, satisfring
equ.

~ATP-PA,+ CIN! +N,C, >0 (1
Sorall rand
-ATP—PA, —ATP-PA+ (12)

+CI'NT +N,C, +CIN! +N,C; > 0.

for v < s < R except the pairs (rs) such that
wr(p(t))ws(p()) = 0,vp(e)-

Since the above equations are LMI's with respect to vari-
ables P and N,, we can find a positive detinite matrix P and
matrix N, or determine that no such matrices exist. This is
a convex feasibility problem. Numerically, this problem can
be solved very efficiently by means of the most powerful
tools available in the mathematical programming literature
e.g. MATLAB-LMI toolbox [28].

The ohserver gains can then be obtained as:
K, =P 'N,. (13)
Finally, by the help of r = ordering(i).ia. .., iy) in Method 1
one can define K, ;, ., [rom K, obtained in (13) and store
into tensor & of (10).

B.  Observer design 1o the protoivpical aervelastic wing
section

This section applies Theorem 1 to the TP model of the aeroc-
lastic wing section. We define matrix € for all r from:

y(1) = Cx(2).
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that 15 10 present case:

1 0 0 0
Lrm (O 10 0)
The ILMIs of Theorem |, applied to result of the TP model
transformation. are feasible and yields 6 observer feedbacks.

In conclusion the state values x3(z) and xs(t) are estimated
by (10) as:

X(t) = A(p()R() + B(p(r)u(r)+

i=}j=

(2 3 -,vL,-(U)Wz_,(fi)kz.j) (y(r) —§(1)).
i

where

() s0-(5) e w1-(2)

(x1(z) = #, plunge, and xp(¢) = o, pitch). In order to
demonstrate the accuracy of the observer, numerical experi-
mentis are presented in the next section.

C.  Simulation results

We simulate the observer for
(001 0.1 01 0.1) and

%(0) = (-0.01 0.1 —0.1 —0.1)", for the open
loop case. Figure 3 shows how the observer is capable of
converging to the unmeasurable state values x3(r) and x4(r).
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VIII. CONCLUSION

First message of the paper is that the TP model transforma-
tion method under the PDC design framework can be used
for observer design in the same way as for controller design.
The second message is that the paper shows how to deter-
mine observer for the prototypical acroelastic wing section.
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