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Abstract — In a novel branch of soft computing developed in
the past few years the desired and the expected response of
the system is mapped to each other. In the case of mechanical
systems the compared values are the second time-derivatives
of the joint coordinates for the estimation of which certain
finite element approximations are used in a digital control.
This may result in a kind of noise and estimation sensitivity.
In the present paper these integer order derivatives are
replaced by discrete numerical estimations of fractional order
derivatives near the order of two to make the control more
stable and accurate. For this purpose Caputo’s form is
considered the numerical approximation of which can be
extended over the limits of the original definition. In this view
differentiation seems to be an operation with some time-
invariant Green function. Simulation results obtained for the
adaptive  control of an  inaccurately  modeled
electromechanical system containing an unmodeled and
undriven internal degree of freedom illustrate that the quality
of the control can be improved if the order of derivation in
the signals used fro comparison are increased from 2 to 2.25.

I. INTRODUCTION

Adaptive control of various physical systems may have
the ,delicate” nature that certain internal degrees of
freedom of these systems are neither observable nor
directly driven, so the cannot be controlled. However, the
physical states of these subsystems influence the motion of
the observed and controlled (that is actuated) ones via
nonlinear coupling.

Realizing that "generality” and "uniformity” of the
“traditional SC structures” exclude the application of
plausible simplifications made the idea rise that by
addressing narrower problem classes a novel branch of soft
computing could be developed by the use of far simpler
and far more lucid uniform structures and procedures than
the classical ones. On the basis of the simultaneous use of
the Modified Renormalization Transformation and simple
ancillary methods [1] it is flexible enough to incorporate
various special groups serving as the resources of the
uniform structures, and to apply special algebraic blocks
for learning as Lorentz Transformations [2], and Minimum
Operation Symplectic Transformations [3] etc. The main
idea of this approach is the construction of a simple
mapping that maps the observed behavior of the controlled
system to the desired one calculated on the basis of a
rough, approximate, incompletc model. Originally it was
elaborated via considering the internal symmetries of
Classical Mechanical Systems [5] on the basis of {4]. It is
interesting that the Canonical Formalism of Classical

Mechanics offers various advantages revealed and utilized
recently, too [6-7].

In the case of Classical Mechanical Systems the
observable and ‘directly controllable agents are the second
time-derivatives of the joint coordinates. The double
integer order derivation can introduce noise-sensitivity into
such systems especially if it is implemented via the
application of discrete-time finite element resolution.

As the generalization of the operation of derivation the
concept of fractional order integrals and derivatives found
more and more physical applications in describing the
Llonger term memory” of various physical systems as e.g.
in the case of visco-elastic phenomena [8-9], seismic
analysis [10], or in the case of control technology [11], etc.
Fractional order derivatives obtained various definitions
from 19™ century [12, 13, or 14]. In general these operators
have an effect similar to integration with some Green
function. In the sequel first this analogy is highlighted,
following that the adaptive control is described,
simulations results are given and analyzed and the
conclusions are drawn.

II. FRACTIONAL ORDER DERIVATIVES AND
GREEN FUNCTIONS

For our purposes the definition of the fractional order
derivatives given by Caputo seems to be the most
expedient as

dit;u(z) - (11;;3) ;[[dr;—(:)}(hf)'”dr, pe©) (1)

For >0 (1) physically has the following simple meaning:
the full 1st order derivative in the integrand removes the
constant component from the signal, and this derivative is
“causally reintegrated” by the use of a Green function that
has a slowly forgetting nature (the contribution of the far
past becomes more and more negligible in it), while its
singularity in ==t enhances the relative weight of the
contribution of the =<r instants. Furthermore, the
relatively slowly decreasing “tail” of this function also acts
as a frequency filter that rejects the high-frequency
components of the traditional 1st derivative,

Due to the singularity of the Green function in (1) a
common finite-element numerical integration cannot
accurately be done. Instead of that, we can suppose that at
least 1'(7) is a relatively slowly varying function of time,
therefore it can be considered as constant during the
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integration over a small time-interval, while the variation
of the Green function can be taken into account accurately,
Furthermore, to introduce symmetry against the translation
of the signal in time we can omit the very long tail of the
Green-function and we can go back in time only to some
time ¢-T instead of 0. The proposed approximation of (1) in
this paper was taken as

2 )=,
()= 22
d” r{(2-p)
§-ﬁ+1 [(S+ 1)-J3+l - S-,am]

r(2-4)

In the prescnt approach it is not our purpose to obtain exact
integer order derivatives from this approximation when
-1 or f—0. Our aim is simply the use of some weighted
average of the past signal. Furthermore, the numerical
approximation (2) can be extended to £=1 for which (1) is
not defined. Fig. 1 describes the coefficients in (2) for
f=1.25 and £=107 s for 50 points.
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Fig. 1. The coefficients of the “extended” numerical approximation of the
Caputo form for f=1.25 and 82107 s (full scale and zoomed excerpt for
the “tail”).

It is easy to see that the calculations made for (2) for f=1
just gives the first derivative, while for O<f<l the
character of the function of coefficients vs. time

considerably differs from that described in Fig. 1.

In the present paper Caputo’s definition for n+f
[$e(0,1), n=0,1,2,...] is applied with the numerical
approximation given in (4), therefore f=1.25, and n=1
results in the “2.25™ derivative in the simulations.
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Fig. 2. The coefficients of the numerical approximation of the Caputo
form for £=0.98 and &=107 s (full scale and zoomed excerpt for the

“tail”).
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IT1. PRINCIPLES OF THE ADAPTIVE CONTROL

For the adaptive control there is given an imperfect system
model as a starting point. On the basis of that some
excitation is calculated to obtain a desired system response
i* as e=@(i"). This model is step by step refined in the
following manner. If we apply the above approximate
excitation, according to the actual system’s inverse
dynamics described by the unknown function a realized

response i'=y{ g(i"))=f(i") is obtained instead of the desired
one, i°. Normally one can obtain information via
observation only on the function f{) considerably varying
in time, and no any possibility exists to directly
"manipulate” the nature of this function: only i’ as the
input of f{) can be “deformed” to i* to achieve and
maintain the i*=f(i"") state. [Only the model finction @)
can directly be manipulated.] On the basis of the
modification of the method of renormalization widely
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applied in Physics the following "scaling iteration” was
suggested for finding the proper deformation:
i3 Slf(iﬂ): ip;d, =81, ;Snf(in'l): iy

i, =81:8 ——1

H+l nelTm* ™ n n—>

(5)

in  which the S, matrces denote some linear
transformations to be specified later. As it can be seen
these matrices maps the observed respense to the desired
one, and the construction of each matrix corresponds to a
step in the adaptive control. It is evident that if this series
converges to the identity operator just the proper
deformation is approached, therefore the -controller
,Jearns” the behavior of the observed system by step-by-
step amendment and maintenance of the initial model.
Since (5) does not unambiguously determine the possible
applicable quadratic matrices, we have additional freedom
in choosing appropriate ones. The most important points of
view are fast and efficient computation, and the ability for
remaining as close to the identity transformation as
possible. For making the problem mathematically
unambiguous (5) can be transformed into a matrix equation
by putting the values of f and i into well-defined blocks of
bigger matrices. Via computing the inverse of the matrix
containing f in (5) the problem can be made
mathematically well defined, Since the calculation of the
inverse of one of the matrices is needed in each control
cycle it is expedient to choose special matrices of fast and
easy invertibility. Within the block matrices the response
arrays may be extended by adding to them a “dummy”,
that is physically not interpreted dimension of constant
value, in order to evade the occurrence of the
mathematically ~dubious 0—0, O-—finite, finite—0
transformations. In the present paper the Minimum
Operation Symplectic Matrices announced in [3] were
applied for this purpose.

In general, the Lie group of the Symplectic Matrices is
defined by the equations

i

155 =S| k|, dets =1 6
§'38=J= 'O,L— (6)

The inverse of such matrices can be calculated in a
computationally ~ very  cost-cfficient  manner  as

8§ =3"S™3. In our particular case
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in which F" ™ e R"" two linearly independent non-
zero vectors constructed of a “dummy parameter” d used
for avoiding the occurrence of 0->0 type mapping as
t':[f“‘T E”’T]T =[ig/w d -d §/w[, whenever the
joint coordinate accelerations are taken into account as the
response of the system. In this paper the main idea is that

instead of the 2™ order derivative we use the fractional
order derivatives for comparison in the above given sense:

T (I P T P

In (7) the orthonormal set {e € W™ | j =23,..., DOF}
can arhitrarily be chosen in the orthogonal subset of

{f“’,f“” } (Parameter w means an adaptive forgetting
weight factor that is given later.) The other components of

* the matrix are defined as follows:
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Both the desired and the observed accelerations generate
their own symplectic matrices. One of them must be
inverted to produce a solution used in (5). The unit vectors
can be created c.g. by using El Hini's algorithm (details are
given e.g. in [13]). Since amongst the conditions for which
the convergence of the method was proved in [1] near-
identity transformations were supposed in the perturbation
theory, a parameter ¢ measuring the ,extent of the
necessary transformation”, a ,regulation factor” 4 can be
introduced in a linear interpolation with small positive &,
& values as

o k]
o max(lf|,|i"'|) ’
i =t Alif 1)

/’L=l+s1+(gzul—s])é, (12)

This interpolation reduces the task of the adaptive control
in the more critical session and helps to keep the necessary
linear transformation in the vicinity of the identity
operator, Other important fact concerning the details of the
numerical calculations is the ratio of |c'j|! and d in (9). The

controller has a priori information only on the nominal
accelerations, but for the appropriate error-relaxation much
higher desired accelerations may occur. For this purpose a
slowly forgetting integrating filter was introduced to create
a weighting factor for O<y<1 as

w(z,).=27’c'i““(z“j]/gy‘ (13)

In the forthcoming simulations the following numerical
data were used: 4=12.5, »=0.9, &=0, £=10" were chosen.

IV. THE DYNAMIC MODEL OF THE DC MOTOR
DRIVEN PENDULUM

Let the pendulum have the rotational generalized
coordinate g; [rad] rotating a ballast of mass m [kg]. The
length of the pendulum is the uncontrolled degree of
freedom described by the generalized coordinate g, [m].
The ballast is “fixed” by spring of stiffness k [N/m]
exerting zero force when g;=l. The Euler-Lagrange
equations of motion in which g [m/s’], Q, [Nxm), and Q,
[N] denote the gravitational acceleration, the driving torque
rotating the pendulum, and the force moving the ballast in
the radial direction (it is eqal to zero in our case because it

478



does not have actuation), respecively, are given as follows:

mq, g, +2mq,q,q, + mgq, singq, = Q,

. I (14)
mg, ~mq.4;-mgcosg, +k(g, —1)=0, =0

@, can be conirolled via the traditional computed torque
control using a DC motor as:

0+ E o)+ KK ()= K )

Ofr)+AQ(t)+ B4, (1)=CcU(t)

in which the appropriate terms have the foliowing physical

interpretation:

* U(# is the motor voltage (provided by a voltage
generator, used for control purposes);

° L denotes the armature inductance
characteristic to the coil in the armature);

* R stands for resistance of the armature coil (constant);

» puis the gear ratio, in our case p=1;

= K, is the electromotive self-induction constant;

» K means the torque constant of the DC motor;

*  ¢n,=q; measures the rotation of the motor’s shaft.

If we distinguish between the “exact” motor parameters

(15)

(constant,

{A,B.C} and their approximately known values g,ﬁ,é}
in the case of CTC control --that is when the "desired
torque” is prescribed-- this leads to the equation of motion
as

. G - g ) e
=™ 4 ZA-AQ™ +| BB g 16
o =¢ +[C JQ +[C Jql (16)

We can try to use the linear control law for the
“hypothetic™ torque with a constant parameter a as

0 =alg, ™= — g ) (17)

In the simulations the actual electrical parameters were as
A=t, B=l, C=1 and their "model value" were

A= 3, B= 4, C=08 , while o depended on the prescribed
irajectory tracking property. According to a rough initial

mechanical model the system the necessary torque was
computed from the formula:

Q"™ =0.1mI*§™ +100x sign(§>) (18)

V. SIMULATION RESULTS

In Fig. 3 the results of trajectory tracking are given for
the rough initial model for the non-adaptive conirol, the
adaptive control using the finite order approximation of the
2" (i.e. integer) order derivatives, ad the adaptive control
using the “numerically extended” order of differcntiation
2.25 for comparison (mapping) purposes.

It is clear that application of the adaptive control
considerably improves the quality of the control, that is the
adaptive control can “learn” the behavior of the system to
be controtled. The stabilizing effect of the extension of the
order of derivation is obvious from the figures, too.

It is even more obvious in the figures describing the phase
space of the controlled joint (Fig. 4),

Nominaland Simulated Trajectory [rad]
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—2.98 T T T
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Fig. 3: Trajectory tracking for the non-adaptive conirol (on the top), the
adaptive control with 2° order derivatives (in the center), and the
adaptive control using 2.25 “numerically extended order of derivation”
(on the bottom) [rad], time in [ms].

Fig. 5 describes the phase trajectory of the uncontrolled
degree of freedom for the above cases. It is evident that
this coupled degree of freedom considerably influenced the
dynamic behavior of the controlled and actuated joint so
the adaptive control was subject to strong and significant
learning requirements,

The efficiency of learning can also be revealed in Fig. 6
describing the torque exerted for the control. The fast
variation  “superimposed” on the slowly varying
component is related to the varying length of the pendulum
in the adaptive case.
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Fig. 4: Phase trajectory of the controlled joint for the non-adaptive control
(on the top), the adaptive control with 2™ order derivatives (in the center),
and the adaptive control using 2.25 numerically extended order of
derivation (on the bottom) [rad, radls].

VI. CONCLUSIONS

In this paper the extension of a numerical approximation
of Caputo s fractional order derivatives was applied for
improving the quality of an adaptive control based on a
novel branch of soft computing.

The main idea was the replacement of the 2™ order
derivatives with extended order ones in the algorithm
mapping the observed behavior to the expected one.

It was found via simulation that the extension of the

order of derivation in the given special way from 2 to
2.25 had considerable stabilizing effect when the 2nd order
derivative is obtained from the simplest finite element

Phase Spaceofthe HiddenDOF
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3261
-647 : . ;
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Phase Spaceofthe HiddenDOF

10.1

501

-10.3
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Fig. 5: Phase trajectory of the uncontrolled joint for the non-adaptive
control {on the top), the adaptive control with 2" order derivatives (in the
center), and the adaptive control using 2.25 numerically extended order
of derivation (on the bottom) [m, m/s],

approximation.

The approximation of the extended derivative in this
approach took into account the past life of the system to
a 50 ms time-horizon.

The paradigm used for the simulation investigation
contained an uncontrolled degree of freedom (the length of
a deformable pendulum) that had very drastic variation in
the case of the nominal motion prescribed for the
controlled joint, namely for the angle of the pendulum.

Via strong dynamic coupling its actual position and
velocity considerably influenced the behavior of the
controlled joints.

It seems to be expedient to prove various extensions of
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Fig. 6: Exerted torque vs. time for the non-adaptive control (on the top),
and the adaptive control using 2.25 “numerically extended order of
derivation” (on the bottom) [Nm], time in [ms].

of the order of derivation in the mapping phase of the
adaptive controller for stabilizing the control in the case of
various physical systems containing free, unmodeled and
uncontrolled internal degree(s) of freedom.
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