Development Environment for Controller Design using HIL Simulation

Petru DOBRA Florin HURGOI Mihai DUMITREAN Daniel MOGA Mirela TRUSCA
Technical University ~ Technical University ~ Technical University ~ Technical University =~ Technical University
of Cluj of Clyj of Cluj of Cluj of Cluj
St. C. [Daicoviciu 15 St. C. [Daicovicin 15 St. C. |Daicoviciu 15 St. C. [Daicoviciu 15 SL. C. |Daicoviciu 15
400020 Cluj 400020 Clyj 400020 Cluj 400020 Cluj 400020 Clyj
ROMANIA ROMANIA ROMANIA ROMANIA ROMANIA

Petru.Dobra@aut.utcluj.ra  Florin. Hurgoi@cs.uicluy.ro

Abstract — With the great diversity of applications, a
development environment must be flexible and provide
exactly the fonctionality necessary for e.cient problem-
solving. Throughout the whole development process, it must
be working with the same MATLAB/Simulink/Stateflow
environment and with the same graphical user interfaces, test
scripts and parameter sets. In all the development steps, there
are o.-the-shelf components that make the development task
more convenient than ever before. Model-based control
design is a highly e.cient and widely established approach
enabling control engineers to work with a single, visualized

system model in an integrated software environment. The
advantages are obvious: There are no friction losses between
teams concerned with dierent design steps, because
everybody is working with the same model; This reduces the
risk of mistakes to a minimum and shortens the development
cycles, Developers and technical managers gain more
transparency and control over the development projects. It is
easier to observe the work status, to preserve knowledge, and
to understand what other team members are currently doing.

L INTRODUCTION

Developing controllers for applications (electrical drive
systems) means large expenditure, when performed with
usual development methods. The workload comprises
development of a mathematical model as well as algorithm
design and implementation, off-line simulation, and
optimization. The whole process has to be restarted on
occurring errors or divergences, which makes the
development process timeconsuming and costly.

Rapid Control Prototyping is a way out of this situation,
especially if the control algorithm is complex and a lot of
iteration steps are necessary [1]. Intelligent software and
hardware tools rtelieve the control engineer from
cumbersome hand coding, The need to make use of these
tools grows with the complexity of the control system to
develop.

The Rapid Control Prototyping tool presented in this
paper is based on MATLAB/Simulink, a widely used
control development software. It allows to design the
controller graphically in the Simulink block diagram
environment. Using the Real-Time Interface to Simulink
the control algorithms are downloaded to a real-time
prototyping  system, which replaces the handmade
prototype and executes the algorithm. This way, changes to
the designed controller are much easier w perform and
iteration step times are reduced to a minimum.

Hardware for Rapid Control Prototyping has to be much
more powerful than the target controller, especially when
complex controller functions shall be implemented.

Dumitrean@ aut.utcluj.ro

Daniel Moga@aut.utclyj.re  Mirela. Trusca@aut.utcluj.ro

Moreover, /O of the prototyping system ideally
corresponds to the IO of the target coniroller. The
hardware introduced in this paper is tailored for
applications in the fields of electrical drives and provides
both, high computational power and a wide range of
powerful /O.

A dSPACE  Simulator for Hardware-in-the-Loop
Simulation

With dSPACE Simulator, it can be throughly tested the
finished controller. dSPACE Simulator replaces the real
environment, and the lests can be executed in any
conceivable test scenario, systematically and reproducibly
thanks to the comprehensive test automation. This way,
complicated test runs in the real environment are reduced
to a minimum, dSPACE Simulator can be used
immediately, together with the development PC.

No matter what the requirements I/O functionality and
signal generation or exiremely high real-time calculation
power the modularity of dSPACE Simulator offers a full
range of options.

1L HARDWARE ARCHITECTURE
A. Processor Section and Host Interface

The DS1103 DSP Controller Board is equipped with a
TI TMS320C31 DSP for fast floating-point calculation at
60 MHz (33.3 ns cycle time, see Figure 1). This high-
performance superscalar microprocessor has three integer
execution units, one floating-point arithmetic unit, and a
separate load/store unit for fast memory access. The on-
chip 128 K x 32-bit RAM, cache size 2 K x 32-bit for
instruction and data cach. The processor's ability to
execute instructions out-of-order leads to a performance
improvement of about factor 2 for typical simulation
models compared to strictly serial instruction flow.

B I/O Section

The board can be adapted to a wide range of closed-loop
applications due 1o its large number of /O devices. High-
resolution A/D converters (16-bit and 12-bit) with a
sampling time of 4 ps and 1.25 ps, tespectively, are
available, as well as /A output channels with a resolution
of 12- bit and a 4 ps settling time. In addition, the
following sub-modules are provided.

482



Fig. 1 DS1102 DSP Controller Board block diagram

Incremental encoder subsystem. Six  digital
incremental encoder inputs are supported for applications
(e.g. in robotics). Digital noise pulse filtering is available.
An additional analog encoder ioput serves as a high-
resolution interface to sinusocidal incremental position
Sensors.

Programmable digital I/O subsystem. Based on TI's
25 MHz TMS320P14 DSP: 16 digital T/O lines (bit-
selectable), Capture/compare unit with 8 channels (2 in, 4
out, 2 infout), PWM generation on up to 6 channels (40 ns
resolution) and User interrupt,

1. CONTROLLER IMPLEMENTATION FROM
BLOCK DIAGRAMS

A. Real-Time Interface to Simulink

Using MATLAB and Simulink for modeling, analysis,
design and offline simulation has become a de-facto
standard for control system development. The Real-Time
Interface cnhances (he Simulink block library with
additional blocks, which provide the link between
Simulink and the real-time hardware (Figure 2). These
blocks cover the I/O functionality of the prototyping
hardware.

MATLAB Simulink

Real-Time
Workshop

Stateflow

Real-Time
Library

Real-Time
Hardware

Fig. 2 The Real-Time Interface in the MATLAB/Simulink environment

To graphically specify an I/O channel the corresponding
block icon has to be picked up from the T/0 block library
and attached to the Simulink controller model. /O
parameters, such as voltage ranges or resolutions, can be
set in appropriate dialog boxes. Thus, even complex /O
devices such as incremental encoders or a CAN interface
can be configured in the block diagram. For multitasking
applications, a pre-emptive scheduler guarantees real-time
behavior with response times of a few microseconds. Tasks
and priorities are also defined graphically within the
Simulink block diagram.

The Simulink model then is transferred into real-time
code, using the Real-Time Workshop and the Real-Time
Interface. Code generation includes the IO channel
specification and the multitasking setup, which are
translated into appropriate function calls of the Real-Time
Library. This library is a C function library providing a
high-level programming interface to the hardware. The
Real-Time Library includes access functions for the slave
DSP and the CAN microcontroller, which make the
interprocessor communication completely transparent to
the user.

B. Simulink Block Library for DS1102

The block library for the DS1102 DSP Controller Board
is shown in Figure 3 comprises all IO units that are
directly served by the TMS320C31. Block icons for the
standard I/O channels such as A/D, D/A converters, and
digital YO are included, as well as the more complex
incremental encoder blocks. An overall encoder setup
block provides a comfortable means for defining the
parameters of the encoder subsystem, such as counter
ranges and signal types. A further block is available for
obtaining encoder outputs for position measurement and
delta position values for speed measurement, The
remaining blocks are used for defining encoder zero
positions and for index search. Apart from the master setup
block, all block icons can be duplicated to handle multiple
encoder channels.

C. Multitasking Implementations

Multitasking is supported by Simulink's capability to
define the sample rate of timer-driven blocks and to set up
triggered and enabled subsystems. A special hardware
interrupt block is used to select one of the interrupt sources
available on the board as the trigger signal for a subsystem.
Figure 4 shows an example block diagram consisting of
three subsystems.

i SR TS e i m,;;,:
Fig. 1 Simulink block library for DS1102
@

483



Fig. 2 Specification of a multitasking control system in Simulink

The time-based part of the control algorithm is driven at
regular sample intervals with a definable step size. No
external trigger input is needed for this subsystem. Another
subsystemn combines all parts of the controller that must be
synchronized 1o PWM signal generation at the slave DSP.
For that we use a hardware interrupt, which is generated by
the slave DSP at a predefined time during the PWM signal
period. A third subsystem handles external events that
occur asynchronously to the normal operation of the
controller. An integrated statechart specification with
Stateflow might be used to describe the behavior of this
subsystem. Double clicking on an interrupt block opens the
dialog for selecting the hardware interrupt source for that
specific trigger signal.

An important feature of the Real-Time Interface is the
ability to use I/O block icons in any subsystem and, for
timer-driven subsystems, with any sample rate. Clearly, the
same /O channel can be used only once. All interrupt-
triggered subsystems and model parts with different
sample rates are handled as different tasks. The priority
setting dialog shown in Figure 4 displays all tasks of the
model for assigning priorities. Timer-driven tasks always
follow the rate-monotonic scheme: tasks with higher
sample rates get higher priorities.

Iv. APPLICATION EXAMPLE: CONTROL OF A
DC MOTOR

As a typical application, the control of an a DC motor is
presented for verification of the proposed techniques. The
squirrel cage DC motor comprises the motor, a digital
encoder for position and velocity measurement, and an
DC/DC electronic converter. The DC/DC electronic
converter is driven by pulse width modulated (PWM)
signals from the DS1102. The whole test setup is shown in
Figure 5. It is described in greater detail in [2] and [3]. The
control theory of DC motor is out of the scope in this
paper. A deeper view into this topic is presented in [4].

A System description and Signal Domains

Main purpose of the control scheme presented here is to
run the motor at a given velocity. ADC conversion and
digital encoder counting are performed by the /O devices
on-board. The PWM signal gencration requires high time
resolution.

4

Encoder Signa

Fig. 3 DC motor control setup with DS1102

B. Modeling with Simulink

The system can easily be set up by exploiting some of
the new features available with the latest version of the
Real-Time Interface (RTI). The execution of the outmost
control layer is triggered by this hardware interrupt
generated at the beginning of every PWM\ period.
Receiving the hardware interrupt is utilized by a standard
unit block supplied with the Real-Time Interface.

Strictly speaking the application is then no longer run at
equidistant times but upon arbitrary occurrences of
interrupts. These however are launched periodically. The
main controller block triggered by external hardware
interrupt from enceder is shown in Figure 6. As no time
base is available any more, the different sample rates are
implemented by means of a software interrupl. A trigger
signal is raised by a counter upon reaching the sample rate
ratio. Then the counter is reset and the blocks sampled at
lower frequencies are executed.

The output variable is write into an I/O block controlling
PWM actions. Input to the main controller block shown in
Figure 6 are the desired velocity speed selected by the user,
the actual velocity speed $Meft( ‘omega \right} $ and the
rotor current $\eft( i_{a}\right) $. All values are read in by
standard /O blocks for reading incremental encoder
position and analog signal.

Fig. 4 Simulink block diagram of control system of DC Motor

& Instrumentation,  Data  Acquisition,  and

Simulation Results

After automatic code generation for the control
application, the executable is downloaded to the processor
board. At this stage, all task assignments to processor are
autornatically made by the software. Once the code is

4



loaded, the drive can be conirclled by the real-time
application. To select operation modes and adjust
controller and user variables, the COCKPIT tool with an
instrumentation panel as shown in Figure 7 is used.

R R .
ed control of DC Motor

a) Relay-basi

Fig. 5 Instrumentation control panel and data acquisition configuration

With this setup the motor can be run with several signal
forms as well as with arbitrary static values. The motor
velocity is observed among other properties, and main
controller parameters are accessible for adjustment. For
data acquisition, the TRACE tool is used as also shown in
Figure 7. It allows for data captures of arbitrary model data
in real-time utilizing trigger functions, and time plotting as
well as trajectory plotting capabilities. In the given trace
capture, a comparison of desired and measured drive
velocity are shown.

V. CONCLUSION

Rapid Control Prototyping for fast drive systems -

requires a hardware with high-performance floating-point
processor and an optimized range of /O devices. The
system presented in this paper provides both. The
computing power of the DSP allows for the calculation of
large-scale floating-point control algorithms in real-time.
Incremental encoder interfaces and PWM outputs make the
board a powerful tool for Rapid Control Prototyping
especially for electrical drive applications.

New control strategies are designed in the
MATLAB/Simulink  environment. The Real-Time
Interface provides additional Simulink blocks for the
connection of 1/O channels to the controller model. This
allows to implement the new controller on the prototyping
hardware. The real-time code for the complete system,
including /O functions, is automatically generated by
means of the Real-Time Workshop and the Real-Time
Interface. No hand-coding is required. Time for

implementation and test of the new algorithm is
minimized.

The paper presents a drives application, in which a PID
controller (tuning with relay-method) for a DC motor is
implemented and tested. The control algorithm runs on the
DSP (TMS320C31) and contains parts, which have to be
synchronized with the /O signals. These I/O signals arc
processed by the slave DSP (TMS320C14), which in
addition  generates the necessary interrupts  for
synchronization.

VL REFERENCES

[1]1 Hanselmann, H. DSP in Control: The Total
Development Environment. International Conference
on Signal Processing Applications and Technology,
Boston, MA, 1995.

[2] Vater, J. The Need for and the Principle of High-
Resolution Incremental Encoder Interfaces in Rapid
Control Prototyping. In: Proceedings of the PCIM97,
June 10-12, 1997

[3] N.N. Squirrel Cage Induction Motor Control with
DS1102.  Application Note, dSPACE GmbH,
Paderborn, 1997.

[4] Trzynadlowski, A. M. The Field Orientation Principle
in Control of Induction Motors, Kluwer Academic
Publishers, Dordrecht, 1994,

[5] Aakolk, G. Regelung der Asynchronmaschine im
Feldschwachbereich bei Orientierung am Stator- oder
am Rotorflup mit dem Signalprozessor TMS320C31
und Vergleich des Regelverhaltens. Studienarbeit
Katalog-Nr. 63, Fachgebiet Leistungselektronik und
elektrische Antriebstechnik, Universitat Paderborn,
1996.

[6] ***Honeywell**# -
Automatic Controls,

Engineering Manual  of

485





