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Abstract—1In this paper we present an adaptive control
strategy for the speed control of a two-mass flexible servo
system with inertia, spring and damping constants assumed
to be unknown. The control strategy is based on the high—gain
concept — to apply it to systems with higher relative degree,
an adaptive PI-Controller is combined with a state—feedback
loop. The goal is to track a given reference signal whereby a
unknown but piecewise constant disturbance is present.

I. INTRODUCTION

In the traditional control theory the plant is assumed to
be perfectly known. On this basis an appropriate controiler
can be developed. But this is a very hard and unrealistic
assumption, because in a predominantly portion of practical
control tasks in industry the designer only has a rough
knowledge about the plant to be controlled. Especially in
the domain of mechatronic systems control strategies were
investigated, that employ an identification unit to get more
information about the plant under control. Mainly differ-
ent types of neural networks are used for identification.
But this approach possesses two main drawbacks: firstly
convergence of the parameters is guaranteed only if the
error—signal is persistently exiting. Secondly it takes rather
long time for the parameters to converge.

In this paper we investigate a simple adaptive control
scheme that does not need a model of the plant. For this
reason an identification algorithm is dispensable.

The considered plant is a two—mass flexible servo system
(TMS). This is a common example for electrical drive
systems with an flexible shaft between the machine and the
load. It is described in continuous—time state-space form
[5]:
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The torque Mjs of the electrical drive with the limiting
|Mas] < 23Nm is considered as the input u, the load
! is considered as the unknown but constant disturbance
Myy. The output y is the velocity of the load wy. The
state vector z-= [wa, Ay, wps]T contains the velocity of
the drive, the angle of twist between the drive and the load
and the velocity of the load. The dynamics of the TMS is
determined by the following unknown physical parameters:
Jar: moment of inertia of the electrical drive [kgm?]

Ja: moment of inertia of the load [kgm?]

d: damping coefficient of the elastic shaft [Nms/rad)
e stiffness of the elastic shaft [N /rad]

II. STATEMENT OF THE PROBLEM

For the unknown TMS introduced in Section I an ap-
propriate control scheme has to be developed. To avoid
the drawbacks of identification algorithms, a non-identifier
based high-gain control strategy is used. This kind of
controller is known to be globally asymptotically stable for
systems of relative degree one. For the TMS having relative
degree two' a suitable extension of the original controller
will be necessary. The goal of control is to attain a given
setpoint even in the presence of a unknown but constant
disturbance acting on the plant. This may happen due to
friction or a load-torque, induced by the work machine.

Il1. CONTROLLER STRUCTURE

The controller structure presented in this paper consists
of two parts. In the feedforward path the adaptive PI-
controller presented in [3] is used - this high—gain con-
troller works with minimum-phase systems with relative
degree one only. So the following assumptions can be
stated:

Assumption (A1): The controlled system is relative degree
one and minimum phase.

Assumption (A2): The unknown disturbance [ is piecewise
constant.

Since the TMS is of relative degree two, (A1) is violated

. 'Here the current conirol loop is assumed as fast enough and is thus
neglected. So the torque Mpas can be an arbitrary function of time. The
inclusion of the current control loop increases the relative degree of Lhe
TMS and therefore makes the problem more complex. Bul simulations
indicate thar local stability is retained at least.



and global stability cannot be achieved by purely applying
this PI-controller. The basic idea to fit the constraint of the
low relative degree is to combine the Pl-controller with a
state feedback structure. The state feedback signal

y’ = Kz with: K = [Ko,Kl,Kz} (2)

is interpreted as an artificial new output. The resulting
transfer function F'(s) = y'(s)/u(s) can easily be made
relative degree one as well as minimum-phase, whereby
the prerequisites are fulfilled. In this case global stability
is achieved by the controller in [3], where a detailed proof
can be found. This is true even in the case of constant
acting disturbances. Furthermore a vanishing control error
is achievable although the plant is unknown, so the de-
sired setpoint is attained asymptotically. The adaptive PI-
controller is given by

t
w(t) = k() eft) + /D Rr)e@dr @)

with the control error ¢ = w — y' = w — Kz. The time-
varying PI—controller contains k1(¢) as its proportional gain
and k2 (t) as its integral gain. These gains are adjusted by
the adaptation laws

k1 (t)
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with free design parameters oy and ap. The integral term
on the right hand side of the adaptation law (5) reveals
the high-gain property of this controller type: the derivative
kz = ag e? > 0 clearly shows the monotony of the function
ko (t). For applying state feedback, the states are assumed
measurable which is true for our TMS. In the more general
case of unmeasurable states a high—gain observer can be
used [1], [2], [4].
For the purpose of decoupling the minimum-~phase prop-
erty from the physical parameters, the TMS is assumed to
have controllable canonical form (CCF):

0
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The feedback signal is now generated by ' = K¢,
Then it is a well-known fact that the feedback coefficients
K = [Ky, K1, Ks] coincide with the coefficients of the
numerator polynomial of the transfer function F'(s). In
other words the transmission zeros from u(s) to y'(s)
are determined by the vector X only, which is a free
design parameter, Consequently the transmission zeros can

487

be placed arbitrarily without knowledge of the real system
parameters. Therefore the minimum-phase assumption can
be satisfied by an appropriate choice of K, i.e. the polyno-
mial z(s) = K3 s* + Ki s + Ko has to be strictly hurwitz.
This means

K;>0 Vielo1,2). )

The requirement of relative degree one is easily satisfied
by the choice Ky # 0. Yet obviously this is implied by the
hurwitz conditions and thus adds no further restriction. The
extension of the PI-controller by state feedback yields a
control strategy that is suitable to control a integrator chain
(CCF) with unknown parameters, affected by a piecewise
constant but unknown disturbance.

IV. TRANSFORMATION ON CCF

Since the TMS was considered as a CCF in the previous
section, the transmission zeros of F'(s) are independent
of the system parameters. This very helpful attribute is the
reason why the minimum-phase condition can casily be
met. But the physical TMS itself is not in CCFE, cf (1). It is
well-known that the input-output behavior of the physical
realization (1) and the mathematical statespace model (6)
coincide, but the real states z differ from the transformed
states £ of the model. Due to controllability we know about
the existence of a similarity transformation, that converts
the physical states into the required states of the CCF-
model. If the state feedback was designed for the CCF-
model, the measured states = of the TMS have to be
transformed, if the controller should be applied to the real
TMS. Because the parameters of the TMS are assumed
to be unknown, the eigenvalues and the eigenvectors are
unknown as well. But the required transformation matrix
depends on the unknown eigenvalues and eigenvectors,
so the conversion between the two different coordinate
systems fails. In other words the measured states are useless
for feedback in this case, while transformed states are
needed. To overcome this obstacle two different solutions
are investigated.

A. General Solution with an Observer Structure

To solve this problem in a general way, a non-adaptive
high-gain observer (HGO) is designed [1], [2], [4]. In
contrast to a Luenberger-observer a copy of the system
cannot be used, because the observed system is unknown.
The HGO consists of a integrator chain of the same
order n = 3 of the TMS with high-gain feedback of the
estimation error e; = x — %.

0
& = AgpsE+ | 0 | 6+ hcobs€x
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0 1 0
Aops = 0 0 1 (8)
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This choice gives an error equation [2], [4]
Esims (Aobs - hcobs) ez + bobs A(wy e:r:) 9

that requires the matrix (Ayps — ACops) 10 be hurwitz
to show stability of the observer. The input A(z,e;) of
the error differential equation (9) is identically zero if a
Luenberger-observer would be used. Because the TMS-
parameters are unknown, this is not possible and the term
A(x,e5) cannot vanish. So this term is interpreted as
a disturbance acting on the observer dynamics. For this
reason the matrix (Aqps — heops) has to be chosen such
that a satisfactory attenuation of the perturbation A(z, e5)
is ensured. If the error gains [3; are chosen such that the
polynomial

f=5"+015 +Prs+ P (10)
is hurwitz, then the eigenvalues of (Agps — heeps) are 1/e
times the roots of (10). With decreasing £ the observer
becomes faster and approximates an nth order differen-
tiator. This would be an ideal observer for the required
transformed states £, because the system is modelled as
a integrator chain with the states # corresponding to the
derivatives of y. With such an HGOQ that does not need any
knowledge of the system the states of the CCF-model can

be approximately reproduced. As usual the observer states -

# are fed back instead of £. The free parameter ¢ influences
the dynamics of the observer and has to be chosen in a
trade—off. On the one hand the observer has to be faster
than the unknown dynamics of the TMS and therefore a
small value seems suitable. But on the other hand fors — 0
the observer converges to a differentiator and measurement
noise will perturb the estimated values.

B. Special Solution with exploitation of the TMS-structure

The physical realization of the TMS contains an integrator
chain but is not in CCF exactly, But its similar structure
leads to a helpful attribute of the transfer function F'(s)
nevertheless. To be precise, it is not required that the
transmuission zeros itself are independent of the TMS-
parameters, but the minimum-phase property has to be
guaranteed, irrespective of the exact values of the TMS-
parameters. So a straight forward calculation yields the
transfer function

y'(s) _ v'(s)
Muy(s)  wu(s)

F(s) = = (11)

_ KoJas® + (d(Ko+ K) + K1J4)s + o Ko + K3)
- JaJrss3 + (Ja + Jar)ds® + e(Ja + Jur)s

if the measurable states x are used for feedback. Indeed
the numerator polynomial of (11) itself is not independent
of the TMS but the minimum-phase condition is met if all
its coefficients are strictly positive. This is ensured by the
following conditions on K, because ali TMS-parameters
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are assumed to be positive for physical reasons.

K, > 0
Ky > —d/Ja{Ko+ Ka) (12)
S ——t
<0
Ky > —-K3

The feedback coefficient K; has to be larger than some
unknown negative constant, so for practical use we restrict
it to non-negative values K; > 0 to ensure condition (12).
With these requirements on the K; which differ from (7)
the minimum-phase condition is satisfied as well as the
relative—degree—one condition. So the measurable states
xz can be used for feedback directly and no observer is
needed. But this is a special case and is no longer true for
arbitrary systems. In the general case the minimum-phase
property depends on the unknown system parameters, es-
pecially if the parameters can also be negative for physical
reasons.

V. SIMULATION RESULTS

For simulation studies the following data of the TMS is
used:

Ju = 0.166 [kgm?]
Ja = 0.333 [kgm?]

= 10 [Nms/rad]
k= 1220 [N frad)

To achieve more realistic simulations the smooth function
Mp = 0.64arctan(10w 4)Nm is implemented to approx-
imate the friction. By this choice the disturbance ! is not
constant and therefore (A2) is violated. But for practical
reasons (A2) can be considered as satisfied because of the
saturation-like behavior of the arctan-function. A rather
slow speed w4 will exceed the steep slope of the function
Mg and causes Mz to approximately adopt its maximum
value. Additionally a load My = 10c(t — 25)Nm is
assumed, with o(t) being the step-function.

U(t)={0 ¥ t<0 (13)

1 ¥V t>0
The resulting load torque is given by My = Mg + M.
The state feedback coefficients are set to Ko =5, K; =0
and Ky = 10. An optimization strategy for an applica-
ble choice for the ratio between these coefficients is not
available at present. Note, that condition (12) guarantees
a stable control loop but nothing else is said about the
transient behavior. For the weighting of the P and the
I component we chose oy = 9 and oy = 20. The
desired value function w(¢) is a step function filtered by a
low pass of degree one. This enables the TMS to follow
approximately. Here the desired value function is chosen
as w(t) = (Ko + K3) - 27(1 — exp~ o5 ), The reason for
using the pregain (Ko + ) will be discussed in the next
paragraph. The simulation result is shown in Fig. 1 to 3.
The output w4 converges to a constant value nearly as fast
as the desired value does. No overshoot is recognizable. At
t = 2s the additional load torque is applied. This is shown
in Fig. 2 and may be due to a closing clutch. The output
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Fig. 1. Simulation result for the TMS without measurement noise. The output w4 attains the setpoint » = 2. The additional load torque applied at
t = 2s reduces the output for a short instant but this effect can be compensated by the controller. The figure on the right hand side zooms the instant

when the load is applied.
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Fig. 2. Simulation result for the TMS without measurement noise. The left hand fig
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drive. The limiting |Mxas] < 23Nm is not exceeded. In the plot on the right hand side the disturbance is shown. In the interval 0 < ¢ < 25 only the
friction Mg = 0.64arctan(10w4)Nm is active. From ¢ > 2s the additional constant load torque of 10Nm is applied.
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Fig. 3. Simulation result for the TMS without measurement noise, The paramelers k1 and ko are plotted. Both of them converge 10 a finite limil.
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Fig. 4. Simulation result for the TMS with measurement noise ©(t). As in the noise-free case the oulput approaches the desired vaiue r = 2m, but

due to the noise y moves around 7. So the error never converges to zero. The additional load reduces the output, this effect is compensated by the
controller, Again. on the right hand side plot this incident is shown in a zoom. In both plots the A—band is drawn in.

input: u = M, control error: g =w -y +Vv
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Fig. 5. Simulation result for the TMS with measurement noise v(t). The input u is bounded 1o the saturation limit |M ] € 23Nm. As a resull of
the sudden load torque the error signal leaves the predefined A—band. In contrast to this, the noise does not force the error signal to leave the band.
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Fig. 6. Simulation result for the TMS with measurement noise ©/(£). Despite the noise the gains converge. Only the load torque causes 2 short period
of adaptation, when the A—band is left.
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decreases a little but the controller copes with this constant
disturbance.

The gains k; and ks are increased (see Fig. 3) by which the
output is forced back to its previous value, A more detailed
zoom of this procedure is shown in the right hand plot of
Fig. 1. As the simulation shows the high-gain parameter ko
converges as well as &y does. The input My stays within
the physically given limit of +23Nm. The control error
e = w — y’ vanishes, forced by the integral action of the
Pl—controller.

The goal of control is the “real” output 3 — not the artificial
output y' — to track the given reference signal. But here w is
given as the set point value for y’. Note that in the steady-
state the ratio ' /y can be made independent of the TMS.
In the steady-state we have:

W4 = wi 14)
Ap = Mw/c (15)
My = Mw=cAyp (16)

The feedback signal y’ is defined by

y' = Koz, + Kyao + Kozz = Kowa + Ki1Ayp + Kawypy

amn
and further it is known that ¥ = 1, = w4 = wyy is valid
in the steady-state case. So a relation between y and g’
follows:

K
y = (Ko +Kz)y+TlMW (18)

To become independent of the unknown ¢ and My, we
have set A; = 0 which is admissible, cf (12). So the
steady state control accuracy no longer depends on the
TMS-parameters. An additional pre-gain Ko + K> adjusts
the setpoint value for ¢". For that reason w is given by

w= (Ko + Ka3)r (19)

where 7 is the desired value for y. This constant pregain
was implemented for all simulation studies.

In practical applications controllers have to deal with
measurement noise »(t). The measured control error e,
will be given by ¢, = e+ = w—1y'+v. In the adaptation
law (5) e gets substituted by e,,, now, so measurement noise
will prevent k; and ko converging even if e = w — 3’
is identically zero. For this reason an extension will be
implemented, in the literature known as A-tracking. The
eITOT ey, 1s set to zero if its absolute value is less than a
predefined lirnit \':

{e-l—u if em| > X
€y =

0 i lem| <N (G0

This modification is applied to the error signal in (4) and
(5) only. Note that in (3) the measured error w — g’ + v
is always used — this error is never set to zero, For this
reason the control action w reacts on every noise signal,
even when the measured error signal is less then A’ Simply
the adaptation is disabled for |e,,| < A, so the gains k;
and %, remain on constant values in this case. To relate the
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value of A’ to the desired value r the same gain as in (19)
is used to calculate A:

N = (Ko + Kz) A @21

In Fig 4 to Fig. 6 the simulation result is shown when
measurement noise ¢ is applied. The limit A was set to 0.2
rad/s. Basically the result is the same as without noisc. The
gain coefficients k; and ky converge, The noise-disturbed
eITor e, results in high frequency components in the input
Mz, As a matter of fact the TMS acts as a low pass filter
by what the high frequency components are damped in the
output signal.

VI. CONCLUSION

In the presented paper, a two-mass flexible servo system
with unknown physical parameters was controlled by an
adaptive control scheme. The applied controller neither
identifies the system parameters nor requires a model of the
plant under control. Only the degree of the plant is assumed
to be known and the states have o be measurable. The
latter assumption may be relaxed if a high—gain observer
is implemented.

Despite the fact that the TMS is of relative degree two, a
high~gain feedback control can be applied to achieve global
stability. Furthermore the presented controller structure is
generalized by a high-gain observer. This enables the
application of high—gain feedback control to systems with
arbitrary relative degree and the achievement of global
stability. The observer incorporates some extra dynamics
in the feedback path and can be interpreted as a kind of
filtering of the output signal. As shown in section IV-A the
observer approximates a differentiator of the order of the
plant.

The presented controller structure also copes with unknown
process parameters and deals with unknown disturbances,
so that the control error converges to zero. Even in the case
of noisy measurement signals this goal is achieved,

The problem of selecting convenient feedback coefficients
remains unsolved. For time-varying systems the monotony
of the gain is expected to cause difficulties. These two
problems will be topics of future investigations.
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