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Abstract:- The paper presents the optimal control problem of the heat penetration in semi-nfinite
space, using boundary commands like the boundary temperature (Dirichlet’s command) . The
necessary conditions for optimality are obtained by a variational approach. The gradient technique is
used to determine the optimal command. A numerical model is developed using the co-state
equations. We developed some algorithms for a large class of problems in this area. Some examples
illustrate the use of our product in the heat penetration in conductors.
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I. INTRODUCTION
The design of any physical system must fit some
requirements, which constitute  the technical

specifications (the constraints). In the frame of these
constraints some performances must be optimised in
order to build the best system. The scope of this paper
covers a large class of engineering applications in the
field of the heat transfer in conductors.

An elliptical equation (steady-state problem) or a
parabolic equation (unsteady-state problem) can
describe the heat transfer by conduction. In the heat
transfer in electrical devices two aspects of the
problem appear:

e  An analysis of the temperature distribution
with imposed boundary conditions (specified
temperature, convective and radiation flow).

e  Optimal control of the heat transfer, either
distributed or boundary commands.

The first aspect is treated in most works and
consists in determining of the temperature distribution
in the parts of the system when the geometry of the
system and the thermal load are known (that is the
internal heat sources and the boundary conditions are
given). The second aspect is more complex because it
requires controlling the heat transfer that is to
determine the values of certain variables called the
commands so that the system has a desired evolution.
More, we seek those commands, called optimal
commands, that lead to the best evolution with respect
a known criterion.

The boundary commands are casy implemented
because the boundary is an interface between
environment and the contrelled system, although the

advanced technologies permit implementation of the
distributed commands.

II. PROBLEM FORMULATION

We limit our discussion at one-dimensional case.
The problem dealt with in this paper is governed by
the following differential equation:
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defined for a time interval T=[0,ty] over a one-
dimensional domain [0,xf. O(x, t) is the state
function (the temperature in our example) in the
point x at the time t, and K a material constant.
System control is accomplished via boundary
controls.

We seek to minimise:
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by choosing an optimum control u’ from a set of
admissible functions U, such that
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fp is a desired temperature distribution at the
final time of the control interval T, and c0 is a
positive weighted constant. The functional cost has a
practical significance: it penalises the deviations of the
temperature in the domain from the imposed standard.
The objective is to obtain the temperature profile in
the interior region of the conductor at certain
prescribed values, while keeping a constant heat flux
on the conductor.



The idealised problem investigated consists in a
copper conductor placed under influence of a
constant temperature V on the boundary x=0. The
conductor is assumed to be infinitely long in the x
direction with the boundary the plane Oyz (see
figure 1). Let us suppose that for t<0, the solid
temperature is 0 and a step temperature V is applied
at the moment t=0.

Figure 1. The domain

\\\\\\{{ R
T
e

L

Figure 2. The temperature distribution

In an analysis problem, the temperature 6(x, t)
along the axis Ox is required.

The initial condition is:

6(0,x) =0

The boundary and limit conditions are:

8(x,0)=0; ;6(0,1) =u(r)
lim 8(x,t)=0
X—yoc
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The command u (t) is defined as Heaviside

function:
V.Vez0
u(t) =4~
0,V <0
The analytical solution for temperature is [2, 6]:
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with A the thermal conductivity of the material
(copper in our case). The function erf (x) is the error
function of Gauss.

The command is the temperature V on the
boundary of the analysis domain (plane defined by
x=0). In the figure 2 the temperature distribution is
represented for a given value of the step using the
program MathCad [4]. As we see, with time
increasing the temperature on the boundary
increases and the penetration depth increases too.

The value for the K is determined with the
expression:

O(x,t) = V[l —erf(

(#)

k=2
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with ¢ - specific heat and y the specific mass.
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Figure 3. Penetration depth in time (x~10)

The figure 3 represents the depth
penetration for different time intervals. We
considered a time interval [0, 8 s] and a length in the
direction Ox equal to x~3 m. The step wvalue is
V=200. We considered a division of the time interval
in 40 points and space interval in 50 points. The
penetration depth depends on time, the boundary
temperature and the conductor properties. In our
examples we consider that the material properties are
constant with the temperature variations.

A special case is for a command
u(x,t)=V.8(x).0(t) (that is a Dirac impulse on the
boundary plane). We have a plane source for a short
time.

The solution of the heat equation is:
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with 1(t) — Heaviside function.

In figure 4 the heat distribution is plotted for an
interval of 0.002 m divided in 50 points and a time
interval [0, 2.10° s] divided in 80 points. The
amplitude of the Dirac impulse is V=550 °C. The
heat penetration for two different times is presented
in the figure 5.

Figure 4. The variation of temperature
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Figure 5. Heat penetration for different times

I1I. NECESSARY CONDITIONS FOR
OPTIMALITY

We transform the constrained optimal control
problem into an unconstrained problem through the
introduction of adjoint function ®. We define the
augmented cost-functional by [1]:

494

t xf 2
L=Ja+ ] T @(x,r)[%g—KQ—g-]dx.dr
00 t ox

Necessary conditions for optimality are derived by
a variational approach. It is considered a variation 6f
in the command f that introduces a variation 3L. From
the first variation of L, results the adjoint equation:

(3

with the limit conditions:
D(t f,x)=2.c0[00 £, %) —0d (x)]
D0, =0; (D(xf,r) =0

T =220
ox

The optimal command u'can be obtained by
solving the state and co-state equations (1) and (5). A
numerical model can be used as the finite element
method. The gradient technique was used in some
previous works of the authors with good results in 2D
models.

IV. AN OPTIMISATION ALGORITHM

There are many deterministic methods capable of
solving the optimisation problem defined above.
Among the various methods, which can be used, the
gradient methods based upon the evaluation of partial
derivatives of the objective function seem the best
way to look for an optimal value of the design
parameters.

The gradient methods need the computation of the
derivatives of various quantities. The computation of
these derivatives is computer time consuming. It is
thus useful to consider a way of optimisation without
the derivative evaluation. To move towards the
minimum of this object function, we must change the
parameter of description of the system against the
slope of the object function J (u); so that we move to
the minimum:

u' 1. ut —5.— (6)
u

where i is the iteration index and s is the step

length in the anti-gradient direction.
The algorithm in pseudo-code has the
following form [5]:
1. Make an initial guess of the command uy,
and set the iterations counter 1o zero;
2. Compute the new command with(6);
3. Solve the equation (3);
4. Compute the performance index (2);



5. Repeat the steps 2" — 4° until subsequent
changes in J are less than a pre-set
criterion.

The length of the step s is determined by a one-
dimensional search technique.

V. SOME APPLICATIONS
If the goal is to have a certain profile of the
temperature at the final time, we can use the object
function defined by (3). The final profile can be a
non-linear or linear function.

Case 1: A non-linear profile for the temperature

The object function is to have a desired non-
linear profile at the final time and an object function
(2) with t=8, X, =10 and Uy =0 and m,=250.

The object function is represented in figure 6 for
cp=0.001. In figure 7 the variation of the profile
temperature with the command in the iterative
process is plotted.
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Figure 6. The object function and minimum

G(X,tf,llﬂ)\\

B(x,tf,50) \\

8d(x)
. \

™~
\‘_\\
) Mﬁ;
0 X 10

Figure 7. The temperature penetration

We consider the case of an imposed temperature
profile by the form:

o __ 150
D 03x+1)2

Case 2: A linear profile for the temperature

We consider the case of a linear profile, that is:
Op(x)=-15.x+150

The parameters has the values t=8, x=~I10,
Uin=100 and u,,=250. In figure 8 the variation of
the J(u) is represented and the variation of the
temperature profiles in the minimisation process is
illustrated in figure 9. The optimal value for u is
u'=190.624 and the minimum for object function is
0.493 for c,=0.0001. The iteration number is 13 with
the start value for u equal to 190,
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Figure 8. The object function for linear profile
Figure 9. The temperature profiles
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VI.CONCLUSIONS

In this paper an algorithm for the optimal control
of the heat penetration in solids is presented. We
tried to illustrate the importance of the optimal
control of the heat penetration in an actual
engineering problem. Numerical results have been
given for the optimal control of the heat penetration
in one space variable but can be extended in a multi-

496

dimensional space. In some previous works we
presented this extension with finite element method.
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