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Abstract — Model predictive control (MPC) is an optimization-
based approach that has been successfully applied to a wide
variety of control problems. When MPC is employed on
nonlinear processes, the application of this typical linear
controller is limited to relatively small operating regions. The
accuracy of the model has significant effect on the
performance of the closed loop system. Hence, the capabilities
of MPC will degrade as the operating level moves away from
its original design level of operation. A solution to avoid these
problems is multiple model adaptive control approach
(MMAC) which uses a bank of models to capture the possible
input-output behavior of processes. In most of these
strategies, the controllers are based on linear models with
fixed parameters so that the vast body of linear control theory
can be applied. Other solutions include the nse of a nonlinear
analytical model, combinations of linear empirical models or
some combination of both. This paper presents an MPC
algorithm which uses on-line simulation and rule-based
control, The basic idea is the on-line simulation of the future
behaviour of contrel system, by using a few control sequences
and based on nonlinear equations of the analytical model.
Finally, the simulations are used to obtain the ‘optimal’
control signal. These issues will be discussed and nonlinear
modeling and control of two processes will be presented as
examples: a single-pass concentric-tube counter flow heat
exchanger and the inverted pendulum on a cart.

L. INTRODUCTION

Model Predictive Control (MPC) refers to a class of
algorithms that utilize an explicit process model to
compute the control signal by minimizing an objective
function. The performance objective typically penalizes
predicted future errors and manipulated variable movement
subject to various comstraints, The ideas appearing in
greater or lesser degree in all the predictive control family
are basically:

-explicit use of a model to predict the process output in
the future;

-on line optimization of a cost objective function over a
future horizon;

-receding strategy, so that at each instant, the horizon is
displaced towards the future, which involves the
application of the first control signal of the sequence
calculated at each step.

Performance of MPC could become unacceptable due to
a very inaccurate model, thus requiring a more accurate
model. This task is an instance of closed-loop
identification and adaptive control. Here it is important to
remember that the model is only used as an instrument in
creating the best combined performance of the controller
and the actual system, so the model does not necessarily
need to be a good open-loop model of the system. The

performance measure should be able to capture as much of
the closed loop behavior as possible.

Let’s consider that it is possible to compute:

- the predictions of output over a finite horizon (V);

- the cost of an objective function,

Jor each possible sequence:

ul)={u(), u(t +1),.., u(t + N)} (0
and then to choose the first element of the optimal control
sequence. For a first look, the advantages of the proposed
algorithm include the following:

-the minimum of objective function is global;

-it is not necessary to invert a matrix, so potential
difficulties are avoided:

-it can be applied to nonlinear processes if a nonlinear
model is available;

-the constraints (linear or nonlinear) can easily be
implemented.

The drawback of this scheme is a very long
computational time, because there are possibly a lot of
sequences. For example, if u(t) is applied to the process
using a “p” bits numerical-analog converter (DAC), the
number of sequences is 2 P*N Therefore, the number of
sequences must be reduced.

{I. CONTROL ALGORITHM

A model based adaptive-predictive algorithm which uses
on line simulation and rule based control, designed for
linear processes, is developed in [8]. This algorithm can
be applied with some modifies to nonlinear processes.

The nonlinear equations of the process can be used
directly in the control algorithm. The predictions of system
output are calculated by integrating the nonlinear ordinary
differential equations of the model over the prediction
horizon, by using a few control sequences.

For a first stage, are used, the next four control
sequences:

| (t) = {umin > ¥ min s+» ¥ min }

Uy (t): {umax »¥min s-> ¥ min }

Us (f) = {”min > Wmax s+ ¥ max }

uy(t) = {“max » ¥max > Wmax } )
where sy, and u,y,. are the limits of the control signal.

There are two pair sequences: (u,(2), uy(#) and (u3(1),
u4(t)) which are different through the preponderance of
Upmin OT Upgay in the future control signal. The pair sequences
are different only through the first term.

In the second stage, depending by the behavior of
control system, it is used an algorithm that modifies the
limits of control signal:
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Ui < uminsl({) =< H(f) = uma.ur(i) = Uinax (3)
At i< A< Ath 4)

In relations (2), the values of %, U, are replaced with
Upinsi(D), Uminse(t). The control signal is computed using a
set of rules based on the extremes (maxg, max;, ming, min;)
of the error of output predictions (e; ;=74 are predicted
errors, d is dead time, 7 1s current time, #, is the horizon of
output, & is a parameter which is used for a fine-tuning
(first, it is simpler to consider 6=0)):

Rule 1:If the sequence u(t) leads to:

ring =, 28 o)

In this case u(t)=tmins(t).

ming > & 5)

Rule 2: If the sequence u(t) leads to:

SR 3 10-»{32):{«}{62 (r)}

In this case #(t=tpas(l).

max; <-8 (6)

Rule 3: If the sequence ua(t) leads to:

Ry = 101{323«3{64 (t)}

and: ey(fy+d+1)>0.
In this case #(t)=tmasst)-

min; <-8 (7)

Rule 4: Ifthe sequence z(t) leads to:

maxy = 1o ek

and: el(t0+d+l)<0.
In this case ¥t/ =tminst).

maxg >8  (8)

Rule 5: In majority of the other situations, it is used z; and
us sequences to obtain the control signal using a linear
relation:

u(t)= ¥ min st (t)maxl ‘”n.]axst (I) ming ©)
max; —min

A good behaviour of the control algorithm leads to a
prevalence of rule 5. Other rules are used to modify the
values of s, Umin: and to stabilise the control signal.

In this form, this algorithm does not address processes
where the gain of the process changes sign.

I1I. THE MODEL OF THE HEAT EXCHANGER

Heat exchangers are devices that facilitate heat transfer
between two or more fluids at different temperatures.
Usually, model predictive control (MPC) uses a linear
model and an on-line least square algorithm (RLS) to
determine the parameters. Heat exchangers are nonlinear
processes. To apply the standard MPC algorithms it is
possible to use multiple model adaptive control approach
(MMAC) which uses a bank of models to capture the
possible input-output behavior of processes [3]. Other
solutions are based on neural networks and fuzzy logic [4],
[5]. In this paper it is used an example from [6]: a heat
exchanger with hot fluid -engine oil at 80°C, cold fluid -
water at 20° C, by using a single-pass counter flow
concentric-tube. Other data and notations: length (L): 60m,
heat transfer coefficients (k;=1000 W/m* °C), k~80

W/(m® °C)), the temperature profile of fluids and wall
(0,(2,0), 82(21),0,(2.1)), specific heat (¢, ¢z, ¢,,), cross-
sectional area for fluids flow and wall {S,, S5, S,.), density
of fluids and wall (g, 22, pu), flow speed of fluids (vy, v2),
transfer area (5) (fig. 1).

If physical properties (density, heat capacity, heat
transfer coefficients, flow speed) are assumed constant, the
heat exchanger model is described using a shell energy
balance as:

-hot fluid:
08,{z, ¢ 06(z,1) kS
apr5; 22 2B K fo (2 )6, )
(10)
-cold fluid:
C00,(z,1 00,(z,¢} kS
P22 _za(r_) +eyPovesSy —la(j—) = —i-[ﬁw(z,r)— 0(z,1)]
(11)
-wall:

30, () S
CwaSw—éEz—) = -L*Iklei(z,f)Jf k@ (z,0)~ (y + k)0, (2.7)]

(12)

9, (z+dz)
Vi, Prr Crel)e 81

8z (z}—H b Bz (z+dz)

Yzr Pzr Czr Mz, Sz

Fig. 1: Temperature distributions

Using general notation 0, with ¢=1 (hot fluid), =2 (cold
fluid), a=w (wall), i, j discrete elements in space
respectively time, the discrete equations corresponding to
partial differential equations (10),(11),(12) are:

- : At kg SAt
e](l,]‘l’l)'—‘el(l,j{l_\f’]g‘ L;1p1S1}+

SAL . .
0,44,
TepiS, Wwlis /)

+V1%‘el(i+1,j)+

8,0, 7 +1)=08,0, j{l P ol il l—
AZ L£'2p2S2 (14)
ESAL
—2——0,,(i,j)

At . ,
—VQ-EZ-"GQ(I'FL_])-F Te 0 S
2202

0,,(i, 7 +1)=0,( 7)+

15
+%£[k191(i,j)+ ka0 (i, 1)+ Uy + 4208, ()] =

In a control application, these equations can not be used
directly because v; and v, are not constant in time. Let’s
consider next assumptions:
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-the speed of fluids is limited: VIminy<VI <Vl fmax);

Vaminy<VY2<Va(max); Vmax=Max ("'l(max) ) V2(max)) (1 6)
- the fluids speed is only time-function:
vi=vi(f), dvi/dz=0 , vo=wy(#) , dv»/dz=0 (17)

- the length of heat exchanger is divided in » intervals:
L=nAz; (18)

- in a time interval At, the fluids cover only a part of Az:
PyVmadi=Az | At < L /(nnyvo,) (19

- two variables Az, Az, are using to totalize the small

fluid displacements: Az, (i+Af)=Az,()+w At ;

Azy(HHAL = Az (BrFmAt (20)

- in simulations, the displacements of the fluids become

effective only if Az;>Az or/fand Az,>Az: in these cases:
AZ]“—' AZrAZ or/and A22<— AZQ-AZ (21)

In other words, in simulations, the continue moves of
fluids are replaced with small discrete displacements. As a
result, the heat exchanger model is described by equations:

Jy SA?

kySAt
0,/ +1)=90(z, /) 1- = + 8,01,/ 22
74)=0 ) 1B BB g )
ko SAs kySAL
0,0,/ +1)=0,(i, /) 1-—2 J+ Z—0,(i./) 23)
: LeapaSy | Legps$y ol
Bw(f’j"'l):ew(iaj)+

SAt ’ ¢ o
+T[k191(1:1)+ k20501, )+ (ky + k20, )]

In a practical implementation, there are used equations
(20), 21), (22), (23), (24).

It is important the number and position of temperature
sensors. Here, it is considered that only the inlet and outlet
temperatures (hot fluid, cold fluid, wall) and the flow rate
of fluids are measured. The temperatures inside heat
exchanger are estimated. The quality of heat exchange
depends especially by the heat transfer coefficients. These
parameters depend by temperatures, accumulation of
deposits of one kind or another on heat transfer surface,
shape of tube, etc. The temperature distributions inside
heat exchanger (process and model) are presented in fig. 2
using notation 6,(i,f). Analogous, the notation MO (i) is
used for the model.
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i section

Fig. 2: Process and model - diagrams

24

At every sample period, it is possible to compute Ay, A,
Ay, Ay, the temperature prediction errors of outlet hot
fluid, outlet cold fluid, wall.

These predictions are used to correct the temperature
distributions inside the model of heat exchanger, using
translations and rotations of distributions. Also, prediction
errors can be used to modify the parameters of the model
using an algorithm based on rules.

IV. APPLICATIONS WITH HEAT EXCHANGER

The next applications show the main features of the
algorithm applied to heat exchanger. The set point has a
variable shape (42°C, 47°C, 52°C, 47°C, 42°C..). The
limits of u(t) (hot fluid flow rate) are: 0.05<u(t)< 0.5
[kg/s]. The flow rate of cold fluid is constant (0.08 kg/s).
The temperatures of cold fluid (20°) and hot fluid (80°)
are constant. Some experiments with variable flow rate
or/and variable temperature of cold fluid are presented in
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Fig.4:Controller output {(accurate model)

First, it is used an accurate model (Fig. 3, fig. 4). If the
algorithm uses only 1..5 rules, the variance of u(t) will be
large. To reduce this variance, a solution is to use a funnel
zone for control signal, based on inequality (3). For
cxample, if rule 5 is active then u,,.., decreases and u,,,,
increases.

Another solution is to limit Aw, using inequality (4). In
steady-state regime, control signal is computed using
average of past and new values. The algorithm do not uses
directly an integral component. In figure 3, steps 50..80,
the algorithm tries to reduce the error as fast as possible.
As a result, a damped oscillation appears. To avoid this
behavior, a solution is to use a reference trajectory.

In figure 5, 6 it is presented an adaptive case; the heat
transfer corfficients depend by temperature:

k =k (1 +6/200) (25)
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Fig. 8: Setpoint, output ( adaptive case)

Initial the temperature of cold and hot fluids is 20°. The
evolution of the estimations of heat transfer coefficients is
presented in figure 7. To obtain these estimations, both
rotations and translations of temperature distributions and
rule based correction of heat transfer coefficients are used.

In figure 8 it is used the same conditions for heat
transfer coefficients, but it is not used the rotations and
translations of temperature distributions. As a result, the
quality of control algorithm decreases.

V. THE MODEL OF THE INVERTED PENDULUM ON
A CART

The cart-pole system considered in this paper is seen in
figure 9. It consists of a cart that moves on a horizontal
track of finite length. The pole is represented by a point
mass attached to the end of a massless thin rod of length /
that is attached to the cart at a pivot capable of
unconstrained (360°) rotation.

Fig.9: The inverted pendulum on a cart

The state space equation of the inverted pendulum on a
cart is given by [13] :
J-Cl =X3

(M +m)g sin x; ~ (mlx% sin x; —bxy + u)cos X

Xy =
1o +msin? x|
X3 =Xy
. —mgsin x| cosx; +m1x§ sin x; —bxy +u
X4 =

(M +msin? X ]

(26)
where x; =0is the angle of the pendulum, x; = 8,
x3 =x the position of the cart, x4 =x and u is applied
force to the cart.

The primary control objective is to stabilize the system
at [x,k,B,é}:[0,0.0,0], starting from [0,0,7,0]. This is a
complicated control problem as the control is
discontinuous at ©=z*r/2. The system is actually not
controllable at this point.

The cart-pole system is a common benchmark problem
in the control systems literature and is a commonly seen
demonstration in many control laboratories.. Early work in
linear control and stabilization of unstable systems focused
on the basic stabilization problem for this system.

In this paper it is used next values of parameters [13]:
M=1.378 is the mass of the cart, =0.0551 is the mass of
the pendulum, /=0.325 is the length of the pendulum,
=981 is the gravity, 5=12.98 is the coefficient of wviscous
friction for motion of the cart.

In a different context, the inverted pendulum model has
been used as an abstraction for many physically
meaningful phenomena.

A hypothesis in the biomechanics community is that a
model known as the Spring Loaded Inverted Pendulum is
the control target for the musculoskeletal system. Some
researchers have implemented successful walking robots
based on this principle and suggest that an intuitive control
algorithm designed from task specifications would be of
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value to many communities, such as robotics and
biomechanics [15].

VI. THE CONTROL ALGORITHM APPLIED TO THE
INVERTED PENDULUM ON A CART

To apply the algorithm to the inverted pendulum on a
cart, first it is necessary to use a supplementary rule which
approximates the sign of the process:

Rule 6: If e{t-)>es(te) or ex(t)>es(t,)
Then the sign is negative
Else the sign is positive 27
where t. is a parameter of the control algorithm. If the sign
is negative, the rules (1)..(5) have a different but similar
form. Second, it is used supplementary control sequences:

US(t): {Umiﬂ! 0,., O}
us(t)=1{0,0, .., 0}

U",'(t): {Umaxs 0! Lt 0} (28)
Using the sequences (28), the rule (5) can be modified:
Rule 5.1: If es(to)eq(t)<0
Then
u(t): U min st (t)e 7(rc)_”max.ct (1)65 (tc) 29)

eq(t.)-es(t.)
Else Rule 5

In the first experiment, the objective of the control
system is only to bring the pendulum up. The figures
10..12  present the results of the control system. The
sample period is 0.1 s. In fig. 10, the predictions of output
are marked with the number of control sequences.
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Fig.10: The setpoint, output, predictions. Case 1.
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100

B I RS e,
v i i i

504 --- 4o B TR BRI SR
N LI L . h.'-"a“P“sfﬁﬂn B e
L i) t
.250.._.._1..._-a.w-‘zﬁ_-_;-_-_l___uaa,.._:___-4---.:___-
4 v ¥ 1 i E i b
-30,0 t t U

0 10 20 30 40 50 &0 70 80 & 160
Fig. 12: The cart position and velocity. Case 1.

In the second experiment, a supplementary objective is to
stop the cart (x=0). A solution to obtain this is to accept
the overshoot of the output x; =0, Next rules are used in

this case:

Rule 0: If es(t)es(t,)<0 and e(t)<0 P
Then If eg(tc)es(tc)<0

Then
Uimin st (1) 6t ) 3
=—_— 0
Wty @

Else
u(r):umaxst(t)eﬁ(tc) (31)

eé(tc )"97 (tc)
Else Ife(t)< 6 ¢ and es(to)e;(t)>0
Then If eq(t.)>0 Then w(t)=tmaus(t)

Else u(t)jummst(t)
Else Rule 1, 2, 3, 4 (relations 5..8)

The figures 13..15 | present the results of the control
system in this case.
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Fig.13: The setpoint, output, predictions. Case 2.
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Fig. 15: The cart position and velocity. Case 2.

In the third experiment, a supplementary objective is to
bring the cart in initial position (x=0). A very simple
solution is to use a proportional term after relations (30),
(31):

u(t) < u(tytk,x (32)
The parameters #., 8,, 6,, &, can be choosed in large
limits. In the experiments it is used #=10, 6 »=80, 6,=25,
k,=10.

The figures 16..18 present the results of the control
system in this case.
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VIL. CONCLUSIONS

A model based predictive control algorithm is presented.
The algorithm uses on-line simulation and rule-based
control. The application and benefits of this algorithm is
demonstrated through simulation examples for two non-
linear processes. The algorithm is simple to implement and
requires minimal computational time.
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